Displaying similar documents to “Order with successors is not interprétable in RCF”

Construction of sentences with specific interpretability properties

A. Stern (1993)

Fundamenta Mathematicae

Similarity:

The Rowland Institute for Science, 100 Cambridge Parkway, Cambridge, Massachusetts 02142, U.S.A. A construction is presented for generating sentences that satisfy a recursively enumerable set of interpretability properties. This construction is then used to prove three previously announced results concerning the lattice of local interpretability types of theories (also known as the Lattice of Chapters).

Strong completeness of the Lambek Calculus with respect to Relational Semantics

Szabolcs Mikulás (1993)

Banach Center Publications

Similarity:

In [vB88], Johan van Benthem introduces Relational Semantics (RelSem for short), and states Soundness Theorem for Lambek Calculus (LC) w.r.t. RelSem. After doing this, he writes: "it would be very interesting to have the converse too", i.e., to have Completeness Theorem. The same question is in [vB91, p. 235]. In the following, we state Strong Completeness Theorems for different versions of LC.

Transition of Consistency and Satisfiability under Language Extensions

Julian J. Schlöder, Peter Koepke (2012)

Formalized Mathematics

Similarity:

This article is the first in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [17] for uncountably large languages. We follow the proof given in [18]. The present article contains the techniques required to expand formal languages. We prove that consistent or satisfiable theories retain these properties under changes to the language they are formulated in.

On what I do not understand (and have something to say): Part I

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdotes and opinions. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history...

Relational Formal Characterization of Rough Sets

Adam Grabowski (2013)

Formalized Mathematics

Similarity:

The notion of a rough set, developed by Pawlak [10], is an important tool to describe situation of incomplete or partially unknown information. In this article, which is essentially the continuation of [6], we try to give the characterization of approximation operators in terms of ordinary properties of underlying relations (some of them, as serial and mediate relations, were not available in the Mizar Mathematical Library). Here we drop the classical equivalence- and tolerance-based...

The Derivations of Temporal Logic Formulas

Mariusz Giero (2012)

Formalized Mathematics

Similarity:

This is a preliminary article to prove the completeness theorem of an extension of basic propositional temporal logic. We base it on the proof of completeness for basic propositional temporal logic given in [12]. We introduce n-ary connectives and prove their properties. We derive temporal logic formulas.

Compactness and Löwenheim-Skolem properties in categories of pre-institutions

Antonino Salibra, Giuseppe Scollo (1993)

Banach Center Publications

Similarity:

The abstract model-theoretic concepts of compactness and Löwenheim-Skolem properties are investigated in the "softer" framework of pre-institutions [18]. Two compactness results are presented in this paper: a more informative reformulation of the compactness theorem for pre-institution transformations, and a theorem on natural equivalences with an abstract form of the first-order pre-institution. These results rely on notions of compact transformation, which are introduced as arrow-oriented...

The Gödel Completeness Theorem for Uncountable Languages

Julian J. Schlöder, Peter Koepke (2012)

Formalized Mathematics

Similarity:

This article is the second in a series of two Mizar articles constituting a formal proof of the Gödel Completeness theorem [15] for uncountably large languages. We follow the proof given in [16]. The present article contains the techniques required to expand a theory such that the expanded theory contains witnesses and is negation faithful. Then the completeness theorem follows immediately.