Displaying similar documents to “Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique”

Porosity of Collet–Eckmann Julia sets

Feliks Przytycki, Steffen Rohde (1998)

Fundamenta Mathematicae

Similarity:

We prove that the Julia set of a rational map of the Riemann sphere satisfying the Collet-Eckmann condition and having no parabolic periodic point is mean porous, if it is not the whole sphere. It follows that the Minkowski dimension of the Julia set is less than 2.

Embedding partially ordered sets into ω ω

Ilijas Farah (1996)

Fundamenta Mathematicae

Similarity:

We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion H E which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).

A Nielsen theory for intersection numbers

Christopher McCord (1997)

Fundamenta Mathematicae

Similarity:

Nielsen theory, originally developed as a homotopy-theoretic approach to fixed point theory, has been translated and extended to various other problems, such as the study of periodic points, coincidence points and roots. In this paper, the techniques of Nielsen theory are applied to the study of intersections of maps. A Nielsen-type number, the Nielsen intersection number NI(f,g), is introduced, and shown to have many of the properties analogous to those of the Nielsen fixed point number....