The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Addendum to “A note on the MacDowell–Specker theorem””

On extending automorphisms of models of Peano Arithmetic

Roman Kossak, Henryk Kotlarski (1996)

Fundamenta Mathematicae

Similarity:

Continuing the earlier research in [10] we give some information on extending automorphisms of models of PA to end extensions and cofinal extensions.

The distributivity numbers of finite products of P(ω)/fin

Saharon Shelah, Otmar Spinas (1998)

Fundamenta Mathematicae

Similarity:

Generalizing [ShSp], for every n < ω we construct a ZFC-model where ℌ(n), the distributivity number of r.o. ( P ( ω ) / f i n ) n , is greater than ℌ(n+1). This answers an old problem of Balcar, Pelant and Simon (see [BaPeSi]). We also show that both Laver and Miller forcings collapse the continuum to ℌ(n) for every n < ω, hence by the first result, consistently they collapse it below ℌ(n).

Universal spaces in the theory of transfinite dimension, I

Wojciech Olszewski (1994)

Fundamenta Mathematicae

Similarity:

R. Pol has shown that for every countable ordinal α, there exists a universal space for separable metrizable spaces X with ind X = α . We prove that for every countable limit ordinal λ, there is no universal space for separable metrizable spaces X with Ind X = λ. This implies that there is no universal space for compact metrizable spaces X with Ind X = λ. We also prove that there is no universal space for compact metrizable spaces X with ind X = λ.

Chains and antichains in Boolean algebras

M. Losada, Stevo Todorčević (2000)

Fundamenta Mathematicae

Similarity:

We give an affirmative answer to problem DJ from Fremlin’s list [8] which asks whether M A ω 1 implies that every uncountable Boolean algebra has an uncountable set of pairwise incomparable elements.