Displaying similar documents to “Sur les séries itérées des fonctions continues”

Sur l'approximation des fonctions de première classe

Stefan Kempisty (1921)

Fundamenta Mathematicae

Similarity:

Mazurkiewicz a établi une propriété remarquable de fonctions de première classe. Il a montré, en se servant de nombres transfinis, qu'étant donnée une fonction f(x) bornée de classe 1 de Baire et un nombre positif ϵ, on peut construire une fonction φ(x) qui est une différence de deux fonctions semi-continues supérieurement et qui vérifie l'inégalité |f(x)-φ(x)| ≤ ϵ Or un théorème analogue a été énoncé par de la Vallée Poussin: Soit f une fonction bornée de classe 1: on peut quel que...

Sur les fonctions développables en séries absolument convergentes de fonctions continues

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer la solution de problèmes suivants: Problèmes 1: Quelle est la condition nécessaire et suffisante pour qu'une fonction d'une variable réelle f(x) soit développable en une série absolument convergente de fonctions continues? et Problèmes 2: Existe-il une fonction de première classe qui ne soit pas somme d'une série absolument convergente de fonctions continues?

Sur deux catégories remarquables de fonctions de variable réelle

H. Looman (1924)

Fundamenta Mathematicae

Similarity:

Monsieur Denjoy a défini deux catégories de fonction de variable réelle, à savoir les fonctions approximativement continues et à prépondérance de continuité d'une part, les dérivées approximatives et les nombres dérivés prépondérants (de fonctions continues) d'autre part, dont il a démontré, en appliquant la partie réciproque du théorème de Baire, qu'elles sont limites de fonction continues. Le but de cette note est de démontrer comment on peut former des suites de fonctions continues,...

Démonstration d'un théorème sur les fonctions de première classe

Wacław Sierpiński (1921)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer (sans l'intervention du transfini) le théorème suivant: Pour toute fonction bornée de première classe f(x) et pour tout nombre ϵ positif donné il existe une fonction qui est une différence de deux fonctions semi-continues supérieurement et qui est égale à f(x) à moins de ϵ près.