Displaying similar documents to “Sur les continus de Jordan et le théorème de M. Brouwer”

Topologie II

Kazimierz Kuratowski

Similarity:

TABLE DES MATIÈRES PRÉFACE AU VOLUME II.................. V QUATRIÈME CHAPITRE. Espaces compacts § 37. Notion de compacité............. 1 § 38. Espaces 2 X et Y X .......... 20 § 39. Fonctions et décompositions semi-continues............ 32 § 40. Problèmes de la dimension (suite).................. 52 CINQUIÈME CHAPITRE. Espaces connexes § 41. Notion de connexité............... 79 § 42. Continus................. 108 § 43. Espaces irréductibles. Espaces indécomposables.............. 131 SIXIÈME...

Sur un problème de M. Menger

Wacław Sierpiński (1926)

Fundamenta Mathematicae

Similarity:

Soit M un ensemble séparable d'un espace métrique. On dit que l'ensemble M jouit de la propriété E, si, quelle que soit la famille ℱ d'ensembles ouverts, telle que pour tout point p de M et tout nombre ϵ > 0 existe un ensemble de la famille ℱ de diamètre = ϵ, contenant p, on peut extraire de ℱ unse suite infinie d'ensembles ouverts dont la somme contient M et dont les diameters tensent vers zero. Le but de cette note est de prouver que si la puissance du continu est א_1, la repnse...

Contribution à l'étude de continus de Jordan

Casimir Kuratowski (1924)

Fundamenta Mathematicae

Similarity:

Le but de cette note est de démontrer: Théorème: Tout continu borné de Jordan contient deux points au moins qui ne le coupent pas (séparément). Théorème: Chaque continu non-borné de Jordan contient un continu borné qui le coupe. Théorème: Si aucun sous-continu d'un continu borné C ne coupe C, C est une courbe simple fermée.

Quelques propriétés topologiques de la demi-droite

Casimir Kuratowski (1922)

Fundamenta Mathematicae

Similarity:

Définition: Ont appelle rayon tout ensemble fermeé homéomorphe à demi-droite (c'est à dire, à ensemble des nombres x ≥ 0). L'image du sommet de la demi-droite est le sommet du rayon. Le but de cette note est de démontrer: Théorème: Tout point d'une ligne de Jordan non-bornée est le sommet d'un rayon contenu dans cette ligne. Théorème: Pour qu'un ensemble E soit un rayon, il faut et il suffit qu'il soit une ligne de Jordan non-borné contenant un point p qui n'est situé sur aucun vrai...