The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Inequalities relative to two-parameter Vilenkin-Fourier coefficients”

Martingale operators and Hardy spaces generated by them

Ferenc Weisz (1995)

Studia Mathematica

Similarity:

Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space H p T is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the B M O q spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the L p norm of the sharp operator is equivalent to the H p T norm. The interpolation spaces between the Hardy and BMO spaces are identified by...

Conjugate martingale transforms

Ferenc Weisz (1992)

Studia Mathematica

Similarity:

Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

Similarity:

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients

Péter Simon, Ferenc Weisz (1997)

Studia Mathematica

Similarity:

Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) ( k = 1 j = 1 | f ̂ ( k , j ) | p ( k j ) p - 2 ) 1 / p C p f H * * p (1/2 < p≤2) where f belongs to the Hardy space H * * p ( G m × G s ) defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao Chen, Dah-Chin Luor (2000)

Studia Mathematica

Similarity:

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property...

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system

G. Gát (1998)

Studia Mathematica

Similarity:

Let G be the Walsh group. For f L 1 ( G ) we prove the a. e. convergence σf → f(n → ∞), where σ n is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator σ * f s u p n | σ n f | . We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, σ * f 1 c | f | H , where H is the Hardy space on the Walsh group.