Displaying similar documents to “Inequalities relative to two-parameter Vilenkin-Fourier coefficients”

Martingale operators and Hardy spaces generated by them

Ferenc Weisz (1995)

Studia Mathematica

Similarity:

Martingale Hardy spaces and BMO spaces generated by an operator T are investigated. An atomic decomposition of the space H p T is given if the operator T is predictable. We generalize the John-Nirenberg theorem, namely, we prove that the B M O q spaces generated by an operator T are all equivalent. The sharp operator is also considered and it is verified that the L p norm of the sharp operator is equivalent to the H p T norm. The interpolation spaces between the Hardy and BMO spaces are identified by...

Conjugate martingale transforms

Ferenc Weisz (1992)

Studia Mathematica

Similarity:

Characterizations of H₁, BMO and VMO martingale spaces generated by bounded Vilenkin systems via conjugate martingale transforms are studied.

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

Similarity:

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients

Péter Simon, Ferenc Weisz (1997)

Studia Mathematica

Similarity:

Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) ( k = 1 j = 1 | f ̂ ( k , j ) | p ( k j ) p - 2 ) 1 / p C p f H * * p (1/2 < p≤2) where f belongs to the Hardy space H * * p ( G m × G s ) defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.

Two-parameter Hardy-Littlewood inequality and its variants

Chang-Pao Chen, Dah-Chin Luor (2000)

Studia Mathematica

Similarity:

Let s* denote the maximal function associated with the rectangular partial sums s m n ( x , y ) of a given double function series with coefficients c j k . The following generalized Hardy-Littlewood inequality is investigated: | | s * | | p , μ C p , α , β Σ j = 0 Σ k = 0 ( j ̅ ) p - α - 2 ( k ̅ ) p - β - 2 | c j k | p 1 / p , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on c j k and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property...

On the characterization of Hardy-Besov spaces on the dyadic group and its applications

Jun Tateoka (1994)

Studia Mathematica

Similarity:

C. Watari [12] obtained a simple characterization of Lipschitz classes L i p ( p ) α ( W ) ( 1 p , α > 0 ) on the dyadic group using the L p -modulus of continuity and the best approximation by Walsh polynomials. Onneweer and Weiyi [4] characterized homogeneous Besov spaces B p , q α on locally compact Vilenkin groups, but there are still some gaps to be filled up. Our purpose is to give the characterization of Besov spaces B p , q α by oscillations, atoms and others on the dyadic groups. As applications, we show a strong capacity inequality...

On (C,1) summability of integrable functions with respect to the Walsh-Kaczmarz system

G. Gát (1998)

Studia Mathematica

Similarity:

Let G be the Walsh group. For f L 1 ( G ) we prove the a. e. convergence σf → f(n → ∞), where σ n is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator σ * f s u p n | σ n f | . We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, σ * f 1 c | f | H , where H is the Hardy space on the Walsh group.