The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pólya fields, Pólya groups and Pólya extensions: a question of capitulation”

On the maximal unramified pro-2-extension over the cyclotomic 2 -extension of an imaginary quadratic field

Yasushi Mizusawa (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For the cyclotomic 2 -extension k of an imaginary quadratic field k , we consider the Galois group G ( k ) of the maximal unramified pro- 2 -extension over k . In this paper, we give some families of k for which G ( k ) is a metabelian pro- 2 -group with the explicit presentation, and determine the case that G ( k ) becomes a nonabelian metacyclic pro- 2 -group. We also calculate Iwasawa theoretically the Galois groups of 2 -class field towers of certain cyclotomic 2 -extensions.

Hilbert-Speiser number fields and Stickelberger ideals

Humio Ichimura (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let p be a prime number. We say that a number field F satisfies the condition ( H p n ) when any abelian extension N / F of exponent dividing p n has a normal integral basis with respect to the ring of p -integers. We also say that F satisfies ( H p ) when it satisfies ( H p n ) for all n 1 . It is known that the rationals satisfy ( H p ) for all prime numbers p . In this paper, we give a simple condition for a number field F to satisfy ( H p n ) in terms of the ideal class group of K = F ( ζ p n ) and a “Stickelberger ideal” associated to the...

Absolute norms of p -primary units

Supriya Pisolkar (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We prove a local analogue of a theorem of J. Martinet about the absolute norm of the relative discriminant ideal of an extension of number fields. The result can be seen as a statement about 2 -primary units. We also prove a similar statement about the absolute norms of p -primary units, for all primes p .

Pólya fields and Pólya numbers

Amandine Leriche (2010)

Actes des rencontres du CIRM

Similarity:

A number field K , with ring of integers 𝒪 K , is said to be a Pólya field if the 𝒪 K -algebra formed by the integer-valued polynomials on 𝒪 K admits a regular basis. In a first part, we focus on fields with degree less than six which are Pólya fields. It is known that a field K is a Pólya field if certain characteristic ideals are principal. Analogously to the classical embedding problem, we consider the embedding of K in a Pólya field. We give a positive answer to this embedding problem by...

Markoff numbers and ambiguous classes

Anitha Srinivasan (2009)

Journal de Théorie des Nombres de Bordeaux

Similarity:

The Markoff conjecture states that given a positive integer c , there is at most one triple ( a , b , c ) of positive integers with a b c that satisfies the equation a 2 + b 2 + c 2 = 3 a b c . The conjecture is known to be true when c is a prime power or two times a prime power. We present an elementary proof of this result. We also show that if in the class group of forms of discriminant d = 9 c 2 - 4 , every ambiguous form in the principal genus corresponds to a divisor of 3 c - 2 , then the conjecture is true. As a result, we obtain criteria...