The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Flows of Mellin transforms with periodic integrator”

(Non)Automaticity of number theoretic functions

Michael Coons (2010)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Denote by λ ( n ) Liouville’s function concerning the parity of the number of prime divisors of n . Using a theorem of Allouche, Mendès France, and Peyrière and many classical results from the theory of the distribution of prime numbers, we prove that λ ( n ) is not k –automatic for any k > 2 . This yields that n = 1 λ ( n ) X n 𝔽 p [ [ X ] ] is transcendental over 𝔽 p ( X ) for any prime p > 2 . Similar results are proven (or reproven) for many common number–theoretic functions, including ϕ , μ , Ω , ω , ρ , and others.

Higher regularizations of zeros of cuspidal automorphic L -functions of GL d

Masato Wakayama, Yoshinori Yamasaki (2011)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic L -functions of GL d over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

The summatory function of q -additive functions on pseudo-polynomial sequences

Manfred G. Madritsch (2012)

Journal de Théorie des Nombres de Bordeaux

Similarity:

The present paper deals with the summatory function of functions acting on the digits of an q -ary expansion. In particular let n be a positive integer, then we call n = r = 0 d r ( n ) q r with d r ( n ) { 0 , ... , q - 1 } its q -ary expansion. We call a function f strictly q -additive, if for a given value, it acts only on the digits of its representation, i.e., f ( n ) = r = 0 f d r ( n ) . Let p ( x ) = α 0 x β 0 + + α d x β d with α 0 , α 1 , ... , α d , , α 0 > 0 , β 0 > > β d 1 and at least one β i . Then we call p a pseudo-polynomial. ...

On gaps in Rényi β -expansions of unity for β > 1 an algebraic number

Jean-Louis Verger-Gaugry (2006)

Annales de l’institut Fourier

Similarity:

Let β > 1 be an algebraic number. We study the strings of zeros (“gaps”) in the Rényi β -expansion   d β ( 1 ) of unity which controls the set β of β -integers. Using a version of Liouville’s inequality which extends Mahler’s and Güting’s approximation theorems, the strings of zeros in d β ( 1 ) are shown to exhibit a “gappiness” asymptotically bounded above by   log ( M ( β ) ) / log ( β ) , where   M ( β )   is the Mahler measure of   β . The proof of this result provides in a natural way a new classification of algebraic numbers > 1 with classes...