Displaying similar documents to “Curvature-decreasing maps are volume-decreasing. On joint work with G. Besson and G. Courtois.”

Renormalized volume and the evolution of APEs

Eric Bahuaud, Rafe Mazzeo, Eric Woolgar (2015)

Geometric Flows

Similarity:

We study the evolution of the renormalized volume functional for even-dimensional asymptotically Poincaré-Einstein metrics (M, g) under normalized Ricci flow. In particular, we prove that [...] where S(g(t)) is the scalar curvature for the evolving metric g(t). This implies that if S +n(n − 1) ≥ 0 at t = 0, then RenV(Mn , g(t)) decreases monotonically. For odd-dimensional asymptotically Poincaré-Einstein metrics with vanishing obstruction tensor,we find that the conformal anomaly for...

On the transverse Scalar Curvature of a Compact Sasaki Manifold

Weiyong He (2014)

Complex Manifolds

Similarity:

We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment...

Construction of Einstein metrics by generalized Dehn filling

Richard H. Bamler (2012)

Journal of the European Mathematical Society

Similarity:

In this paper, we present a new approach to the construction of Einstein metrics by a generalization of Thurston's Dehn filling. In particular in dimension 3, we will obtain an analytic proof of Thurston's result.

Weakly-Einstein hermitian surfaces

Vestislav Apostolov, Oleg Muškarov (1999)

Annales de l'institut Fourier

Similarity:

A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as we obtain a complete classification of the compact locally homogeneous * -Einstein Hermitian surfaces. We also provide large families of non-homogeneous * -Einstein (but non-Einstein) Hermitian metrics on 2 2 , 1 × 1 , and on the product surface X × Y of two curves X and Y whose genuses are greater than 1...