Displaying similar documents to “Fractional derivative of the multivariable polynomials.”

Fractional-order Bessel functions with various applications

Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi (2019)

Applications of Mathematics

Similarity:

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error...

A constructive approach for solving system of fractional differential equations

H.R. Marasi, Vishnu Narayan Mishra, M. Daneshbastam (2017)

Waves, Wavelets and Fractals

Similarity:

In this paper to solve a set of linear and nonlinear fractional differential equations, we modified the differential transform method. Adomian polynomials helped taking care of the non-linear terms. The main advantage of our algorithm over the numerical methods is being able to solve nonlinear systems without any discretization or restrictive assumption. We considered Caputo definition for fractional derivatives.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

On a partial Hadamard fractional integral inclusion

Aurelian Cernea (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We study a class of nonconvex Hadamard fractional integral inclusions and we establish some Filippov type existence results.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi, Hadda Hammouche (2021)

Mathematica Bohemica

Similarity:

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Praveen Agarwal, Juan J. Nieto (2015)

Open Mathematics

Similarity:

In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.