Displaying similar documents to “Familles d’extensions de corps de nombres l -rationnels”

Extensions quadratiques 2-birationnelles de corps totalement réels.

Jean-François Jaulent, Odile Sauzet (2000)

Publicacions Matemàtiques

Similarity:

We characterize 2-birational CM-extensions of totally real number fields in terms of tame ramification. This result completes in this case a previous work on pro-l-extensions over 2-rational number fields.

Analogues étales de la p -tour des corps de classes

Jilali Assim (2003)

Journal de théorie des nombres de Bordeaux

Similarity:

Nous construisons un analogue «tordu» de la p -tour de corps de classes d’un corps de nombres ( p un nombre premier) et étudions ses liens avec la théorie d’Iwasawa. Le résultat principal donne un critère du type Golod et Shafarevich pour que la tour «tordue» soit infinie.

S -classes infinitésimales d’un corps de nombres algébriques

Jean-François Jaulent (1984)

Annales de l'institut Fourier

Similarity:

Nous introduisons les notions de nombres et d’idéaux infinitésimaux attachés à un corps de nombres algébriques K relativement à un nombre premier donné , et nous interprétons le groupe de Galois 𝒜 ( K ) de la -extension abélienne -ramifiée maximale de K comme quotient du tensorisé Z Z J ( K ) du groupe des idéaux étrangers à par le sous-module engendré par les idéaux principaux-infinitésimaux. Nous en déduisons diverses conséquences sur l’arithmétique des groupes 𝒜 ( K ) , en montrant en particulier qu’ils...

La théorie de Kummer et le K 2 des corps de nombres

Jean-François Jaulent (1990)

Journal de théorie des nombres de Bordeaux

Similarity:

Nous associons à chaque corps de nombres K un groupe universel K 2 ¯ ( K ) analogue au groupe symbolique K 2 ( K ) , et deux sous-groupes canoniques finis R 2 ¯ ( K ) et H 2 ¯ ( K ) , qui correspondent aux noyaux réguliers et hilbertien de la K -théorie, et permettent d’expliciter les correspondances remarquables entre divers modules galoisiens classiques faisant intervenir les conjectures de Leopoldt et de Gross.