Displaying similar documents to “On small solutions of second order differential equations with random coefficients”

Numerical stability of the intrinsic equations for beams in time domain

Klesa, Jan

Similarity:

Intrinsic equations represent promising approach for the description of rotor blade dynamics. They are the system of non-linear partial differential equations. Stability of numeric solution by the finite difference method is described. The stability is studied for various numerical schemes with different methods for the computation of spatial derivatives from time level n + 0 . 5 (i.e., mean values of old and new time step) to n + 1 (i.e., only from new time step). Stable solution was obtained only...

Steady state in a biological system: global asymptotic stability

Maria Adelaide Sneider (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron K , is globally asymptotically stable in K . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.

Steady state in a biological system: global asymptotic stability

Maria Adelaide Sneider (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

A suitable Liapunov function is constructed for proving that the unique critical point of a non-linear system of ordinary differential equations, considered in a well determined polyhedron K , is globally asymptotically stable in K . The analytic problem arises from an investigation concerning a steady state in a particular macromolecular system: the visual system represented by the pigment rhodopsin in the presence of light.

Stability of nonlinear h -difference systems with n fractional orders

Małgorzata Wyrwas, Ewa Pawluszewicz, Ewa Girejko (2015)

Kybernetika

Similarity:

In the paper we study the subject of stability of systems with h -differences of Caputo-, Riemann-Liouville- and Grünwald-Letnikov-type with n fractional orders. The equivalent descriptions of fractional h -difference systems are presented. The sufficient conditions for asymptotic stability are given. Moreover, the Lyapunov direct method is used to analyze the stability of the considered systems with n -orders.

Nonlinear fourth order problems with asymptotically linear nonlinearities

Abir Amor Ben Ali, Makkia Dammak (2024)

Mathematica Bohemica

Similarity:

We investigate some nonlinear elliptic problems of the form Δ 2 v + σ ( x ) v = h ( x , v ) in Ω , v = Δ v = 0 on Ω , ( P ) where Ω is a regular bounded domain in N , N 2 , σ ( x ) a positive function in L ( Ω ) , and the nonlinearity h ( x , t ) is indefinite. We prove the existence of solutions to the problem (P) when the function h ( x , t ) is asymptotically linear at infinity by using variational method but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the nonlinearities are superlinear and subcritical.

Quantitative stability for sumsets in n

Alessio Figalli, David Jerison (2015)

Journal of the European Mathematical Society

Similarity:

Given a measurable set A n of positive measure, it is not difficult to show that | A + A | = | 2 A | if and only if A is equal to its convex hull minus a set of measure zero. We investigate the stability of this statement: If ( | A + A | - | 2 A | ) / | A | is small, is A close to its convex hull? Our main result is an explicit control, in arbitrary dimension, on the measure of the difference between A and its convex hull in terms of ( | A + A | - | 2 A | ) / | A | .

Asymptotic behavior of a sequence defined by iteration with applications

Stevo Stević (2002)

Colloquium Mathematicae

Similarity:

We consider the asymptotic behavior of some classes of sequences defined by a recurrent formula. The main result is the following: Let f: (0,∞)² → (0,∞) be a continuous function such that (a) 0 < f(x,y) < px + (1-p)y for some p ∈ (0,1) and for all x,y ∈ (0,α), where α > 0; (b) f ( x , y ) = p x + ( 1 - p ) y - s = m s ( x , y ) uniformly in a neighborhood of the origin, where m > 1, s ( x , y ) = i = 0 s a i , s x s - i y i ; (c) ( 1 , 1 ) = i = 0 m a i , m > 0 . Let x₀,x₁ ∈ (0,α) and x n + 1 = f ( x , x n - 1 ) , n ∈ ℕ. Then the sequence (xₙ) satisfies the following asymptotic formula: x ( ( 2 - p ) / ( ( m - 1 ) i = 0 m a i , m ) ) 1 / ( m - 1 ) 1 / n m - 1 .

On Kneser solutions of the n -th order nonlinear differential inclusions

Martina Pavlačková (2019)

Czechoslovak Mathematical Journal

Similarity:

The paper deals with the existence of a Kneser solution of the n -th order nonlinear differential inclusion x ( n ) ( t ) - A 1 ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( n - 1 ) ( t ) - ... - A n ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( t ) for a.a. t [ a , ) , where a ( 0 , ) , and A i : [ a , ) × n , i = 1 , ... , n , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.

Asymptotic forms of solutions of perturbed half-linear ordinary differential equations

Sokea Luey, Hiroyuki Usami (2021)

Archivum Mathematicum

Similarity:

Asymptotic forms of solutions of half-linear ordinary differential equation ( | u ' | α - 1 u ' ) ' = α ( 1 + b ( t ) ) | u | α - 1 u are investigated under a smallness condition and some signum conditions on b ( t ) . When α = 1 , our results reduce to well-known ones for linear ordinary differential equations.

On behavior of solutions to a chemotaxis system with a nonlinear sensitivity function

Senba, Takasi, Fujie, Kentarou

Similarity:

In this paper, we consider solutions to the following chemotaxis system with general sensitivity τ u t = Δ u - · ( u χ ( v ) ) in Ω × ( 0 , ) , η v t = Δ v - v + u in Ω × ( 0 , ) , u ν = u ν = 0 on Ω × ( 0 , ) . Here, τ and η are positive constants, χ is a smooth function on ( 0 , ) satisfying χ ' ( · ) > 0 and Ω is a bounded domain of 𝐑 n ( n 2 ). It is well known that the chemotaxis system with direct sensitivity ( χ ( v ) = χ 0 v , χ 0 > 0 ) has blowup solutions in the case where n 2 . On the other hand, in the case where χ ( v ) = χ 0 log v with 0 < χ 0 1 , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness...

Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni, Ian Schindler, Peter Takáč (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u &gt; 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 &lt; p &lt; , p - 1 &lt; q p * - 1 , λ &gt; 0 , and 0 &lt; δ &lt; 1 . As usual, p * = N p N - p if 1 &lt; p &lt; N , p * ( p , ) is arbitrarily large if p = N , and p * = if p &gt; N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle...

Small and large time stability of the time taken for a Lévy process to cross curved boundaries

Philip S. Griffin, Ross A. Maller (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

This paper is concerned with the small time behaviour of a Lévy process X . In particular, we investigate theof the times, T ¯ b ( r ) and T b * ( r ) , at which X , started with X 0 = 0 , first leaves the space-time regions { ( t , y ) 2 : y r t b , t 0 } (one-sided exit), or { ( t , y ) 2 : | y | r t b , t 0 } (two-sided exit), 0 b l t ; 1 , as r 0 . Thus essentially we determine whether or not these passage times behave like deterministic functions in the sense of different modes of convergence; specifically convergence in probability, almost surely and in L p . In many instances these are...

Existence and asymptotic behavior of positive solutions for elliptic systems with nonstandard growth conditions

Honghui Yin, Zuodong Yang (2012)

Annales Polonici Mathematici

Similarity:

Our main purpose is to establish the existence of a positive solution of the system ⎧ - p ( x ) u = F ( x , u , v ) , x ∈ Ω, ⎨ - q ( x ) v = H ( x , u , v ) , x ∈ Ω, ⎩u = v = 0, x ∈ ∂Ω, where Ω N is a bounded domain with C² boundary, F ( x , u , v ) = λ p ( x ) [ g ( x ) a ( u ) + f ( v ) ] , H ( x , u , v ) = λ q ( x ) [ g ( x ) b ( v ) + h ( u ) ] , λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and - p ( x ) u = - d i v ( | u | p ( x ) - 2 u ) is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.