Displaying similar documents to “Supremum properties of Galois-type connections”

Random Galois extensions of Hilbertian fields

Lior Bary-Soroker, Arno Fehm (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let L be a Galois extension of a countable Hilbertian field K . Although L need not be Hilbertian, we prove that an abundance of large Galois subextensions of L / K are.

Counting discriminants of number fields

Henri Cohen, Francisco Diaz y Diaz, Michel Olivier (2006)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For each transitive permutation group G on n letters with n 4 , we give without proof results, conjectures, and numerical computations on discriminants of number fields L of degree n over such that the Galois group of the Galois closure of L is isomorphic to G .

On the asymptotics of counting functions for Ahlfors regular sets

Dušan Pokorný, Marc Rauch (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We deal with the so-called Ahlfors regular sets (also known as s -regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit lim ε 0 + ε s N ( ε , K ) exist, where K is an s -regular set and N ( ε , K ) is for instance the ε -packing number of K ?

Universal completely regular dendrites

K. Omiljanowski, S. Zafiridou (2005)

Colloquium Mathematicae

Similarity:

We define a dendrite E n which is universal in the class of all completely regular dendrites with order of points not greater than n. In particular, the dendrite E ω is universal in the class of all completely regular dendrites. The construction starts with the standard universal dendrite D n of order n described by J. J. Charatonik.

Internally club and approachable for larger structures

John Krueger (2008)

Fundamenta Mathematicae

Similarity:

We generalize the notion of a fat subset of a regular cardinal κ to a fat subset of P κ ( X ) , where κ ⊆ X. Suppose μ < κ, μ < μ = μ , and κ is supercompact. Then there is a generic extension in which κ = μ⁺⁺, and for all regular λ ≥ μ⁺⁺, there are stationarily many N in [ H ( λ ) ] μ which are internally club but not internally approachable.

Noncommutative numerical motives, Tannakian structures, and motivic Galois groups

Matilde Marcolli, Gonçalo Tabuada (2016)

Journal of the European Mathematical Society

Similarity:

In this article we further the study of noncommutative numerical motives, initiated in [30, 31]. By exploring the change-of-coefficients mechanism, we start by improving some of the main results of [30]. Then, making use of the notion of Schur-finiteness, we prove that the category NNum ( k ) F of noncommutative numerical motives is (neutral) super-Tannakian. As in the commutative world, NNum ( k ) F is not Tannakian. In order to solve this problem we promote periodic cyclic homology to a well-defined...