Éditorial
(2006)
Revue d'histoire des mathématiques
Similarity:
The search session has expired. Please query the service again.
(2006)
Revue d'histoire des mathématiques
Similarity:
Sébastien Gandon (2004)
Revue d'histoire des mathématiques
Similarity:
Cet article a pour objectif de réinsérer les analyses que Russell consacre à la géométrie dans le contexte des discussions sur les fondements de la géométrie à la fin du xixe siècle. Plus précisément, il vise d’abord à retracer l’influence du premier ouvrage de Whitehead (, 1898) sur les conceptions russelliennes de la géométrie ; il vise ensuite à établir que le concept géométrique fondamental n’est pas pour Russell le concept d’ordre, mais celui d’incidence. Les deux thèses sont intimement...
Philippe Nabonnand (2000)
Revue d'histoire des mathématiques
Similarity:
Avant leur célèbre polémique sur la logistique, Poincaré et Russell s’étaient déjà publiquement opposés sur la question du statut des axiomes de la géométrie. Les débats philosophiques de la fin du xixe siècle autour de la géométrie et de la théorie de l’espace influent de manière significative sur la conception et le développement de la géométrie. Le but de cet article est de montrer comment les mathématiques sont mises au service des thèses soutenues par Poincaré et Russell et d’analyser...
Pierre Lamandé (2004)
Revue d'histoire des mathématiques
Similarity:
L’objet de cet article est d’examiner la vision des nombres telle qu’elle apparaît dans les ouvrages de S.F.Lacroix. Marqué par le génétisme sensualiste de Condillac, ce dernier sut le dépasser et bâtir ses textes, comme le recommandait d’Alembert, autour d’idées simples, issues d’une vision mathématique dégagée des débats métaphysiques. Sans prétendre construire de système philosophique, il bâtit une œuvre d’une profonde cohérence. Partant des nombres entiers et des opérations arithmétiques,...
Karine Chemla (1998)
Revue d'histoire des mathématiques
Similarity:
Comment introduire de la généralité dans un monde géométrique où une foule de vérités particulières, établies par des méthodes , restent sans liaison entre elles et forment donc un ensemble sans organisation ? En suivant les divers traitements d’un unique théorème, appelé aujourd’hui le , le présent article vise à examiner comment les travaux géométriques de Lazare Carnot ont indiqué, aux géomètres comme Poncelet ou Chasles qui posaient cette question, diverses pistes pour y répondre. ...
Daniel Lascar (1998)
Revue d'histoire des mathématiques
Similarity:
Je vais traiter, d’un point de vue personnel, la naissance et les premiers développements de la théorie des modèles pendant la période qui s’étend de sa naissance vers 1870, avec les travaux de Peirce, jusqu’au théorème de Morley vers 1965. J’insisterai particulièrement sur l’aspect « algèbre universelle » et j’essaierai de dégager comment la notion de définissabilité a fait évoluer cette théorie jusqu’à une science complexe pouvant apporter de nouvelles idées au reste des mathématiques. ...
Anne Robadey (2004)
Revue d'histoire des mathématiques
Similarity:
L’analyse de l’article de Poincaré sur les géodésiques fait apparaître qu’il entretient des liens complexes avec les travaux antérieurs de Poincaré en mécanique céleste. Nous montrerons que le problème des géodésiques des surfaces convexes est traité comme un paradigme grâce auquel Poincaré explicite une méthode qui n’était présentée qu’à l’état d’ébauche dans ses ouvrages de mécanique céleste. Cette étude de cas permet ainsi de mettre en évidence l’utilisation par Poincaré d’une technique...
Edmond Mazet (2003)
Revue d'histoire des mathématiques
Similarity:
Oresme est connu, entre autres choses, pour avoir développé dans ses une « théorie des séries », incluant la nature et la sommation des séries géométriques ainsi que la divergence de la série harmonique. Dans le présent article on se propose de voir en quel sens Oresme a réellement développé une théorie des séries, en situant cette théorie dans le cadre des conceptions mathématiques médiévales. Cette théorie peut être vue comme un approfondissement mathématique des notions aristotéliciennes...
Maryvonne Spiesser (2006)
Revue d'histoire des mathématiques
Similarity:
Nicolas Chuquet est l’un des rares mathématiciens français du XVe siècle dont la postérité a retenu le nom. Il nous a laissé un , œuvre originale et dense qui doit beaucoup à sa lecture des traités mathématiques à l’usage des marchands, apparus en France en son siècle. Pour cette raison, après avoir brièvement décrit et situé l’œuvre de Chuquet, nous examinons la partie algébrique du en la replaçant dans le contexte des arithmétiques marchandes, pour y observer le statut accordé par...
Luigi Maierù (2004)
Revue d'histoire des mathématiques
Similarity:
John Wallis publie entre 1669 et 1671 les trois parties de son traité de , qu’il caractérise lui-même comme un traité de géométrie. La mécanique est située à l’intérieur de la géométrie, dont elle partage les méthodes, puisque les propriétés du mouvement sont démontrées . Wallis veut fonder la mécanique sur de nouvelles bases. Pour cela, il y applique une méthode qu’il a élaborée dans l’, en partant de la méthode des indivisibles de Cavalieri, et qu’il a déjà expérimentée en géométrie....