Displaying similar documents to “Complete spacelike hypersurfaces with constant scalar curvature”

Hypersurfaces with constant k -th mean curvature in a Lorentzian space form

Shichang Shu (2010)

Archivum Mathematicum

Similarity:

In this paper, we study n ( n 3 ) -dimensional complete connected and oriented space-like hypersurfaces M n in an (n+1)-dimensional Lorentzian space form M 1 n + 1 ( c ) with non-zero constant k -th ( k < n ) mean curvature and two distinct principal curvatures λ and μ . We give some characterizations of Riemannian product H m ( c 1 ) × M n - m ( c 2 ) and show that the Riemannian product H m ( c 1 ) × M n - m ( c 2 ) is the only complete connected and oriented space-like hypersurface in M 1 n + 1 ( c ) with constant k -th mean curvature and two distinct principal curvatures, if the multiplicities...

Hypersurfaces with constant curvature in n + 1

J. A. Gálvez, A. Martínez (2002)

Banach Center Publications

Similarity:

We give some optimal estimates of the height, curvature and volume of compact hypersurfaces in n + 1 with constant curvature bounding a planar closed (n-1)-submanifold.

Weingarten hypersurfaces of the spherical type in Euclidean spaces

Cid D. F. Machado, Carlos M. C. Riveros (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We generalize a parametrization obtained by A. V. Corro in (2006) in the three-dimensional Euclidean space. Using this parametrization we study a class of oriented hypersurfaces M n , n 2 , in Euclidean space satisfying a relation r = 1 n ( - 1 ) r + 1 r f r - 1 n r H r = 0 , where H r is the r th mean curvature and f C ( M n ; ) , these hypersurfaces are called Weingarten hypersurfaces of the spherical type. This class of hypersurfaces includes the surfaces of the spherical type (Laguerré minimal surfaces). We characterize these hypersurfaces in terms...

New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space

Cícero P. Aquino, Henrique F. de Lima (2015)

Archivum Mathematicum

Similarity:

In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space n + 1 , that is, complete hypersurfaces of n + 1 whose mean curvature H and normalized scalar curvature R satisfy R = a H + b for some a , b . In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of n + 1 . Furthermore,...

A characterization of n-dimensional hypersurfaces in R n + 1 with commuting curvature operators

Yulian T. Tsankov (2005)

Banach Center Publications

Similarity:

Let Mⁿ be a hypersurface in R n + 1 . We prove that two classical Jacobi curvature operators J x and J y commute on Mⁿ, n > 2, for all orthonormal pairs (x,y) and for all points p ∈ M if and only if Mⁿ is a space of constant sectional curvature. Also we consider all hypersurfaces with n ≥ 4 satisfying the commutation relation ( K x , y K z , u ) ( u ) = ( K z , u K x , y ) ( u ) , where K x , y ( u ) = R ( x , y , u ) , for all orthonormal tangent vectors x,y,z,w and for all points p ∈ M.

A new characterization of the sphere in R 3

Thomas Hasanis (1980)

Annales Polonici Mathematici

Similarity:

Let M be a closed connected surface in R 3 with positive Gaussian curvature K and let K I I be the curvature of its second fundamental form. It is shown that M is a sphere if K I I = c H K r , for some constants c and r, where H is the mean curvature of M.

A short note on f -biharmonic hypersurfaces

Selcen Y. Perktaş, Bilal E. Acet, Adara M. Blaga (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In the present paper we give some properties of f -biharmonic hypersurfaces in real space forms. By using the f -biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the f -biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider f -biharmonic vertical cylinders in S 2 × .

Sharp estimates for bubbling solutions of a fourth order mean field equation

Chang-Shou Lin, Juncheng Wei (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider a sequence of multi-bubble solutions u k of the following fourth order equation Δ 2 u k = ρ k h ( x ) e u k Ω h e u k in Ω , u k = Δ u k = 0 on Ω , ( * ) where h is a C 2 , β positive function, Ω is a bounded and smooth domain in 4 , and ρ k is a constant such that ρ k C . We show that (after extracting a subsequence), lim k + ρ k = 32 σ 3 m for some positive integer m 1 , where σ 3 is the area of the unit sphere in 4 . Furthermore, we obtain the following sharp estimates for  ρ k : ρ k - 32 σ 3 m = c 0 j = 1 m ϵ k , j 2 l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) + o j = 1 m ϵ k , j 2 where c 0 &gt; 0 , log 64 ϵ k , j 4 = max x B δ ( p j ) u k ( x ) - log ( Ω h e u k ) and u k 32 σ 3 j = 1 m G 4 ( · , p j ) in C loc 4 ( Ω { p 1 , ... , p m } ) . This yields a bound of solutions as...

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee (2019)

Communications in Mathematics

Similarity:

We study lightlike hypersurfaces M of an indefinite Kaehler manifold M ¯ of quasi-constant curvature subject to the condition that the characteristic vector field ζ of M ¯ is tangent to M . First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of M ¯ such that (1) the screen distribution S ( T M ) is totally umbilical or (2) M is screen conformal.