Displaying similar documents to “A characterization of the space D F '

One-parameter semigroups in the convolution algebra of rapidly decreasing distributions

(2012)

Colloquium Mathematicae

Similarity:

The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra C ' ( ; M m × m ) of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that G C ' ( ; M m × m ) is the generating distribution of an i.d.c.s. if and only if the operator t m × m - G on 1 + n satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.

Kernel theorems in spaces of generalized functions

Antoine Delcroix (2010)

Banach Center Publications

Similarity:

In analogy to the classical isomorphism between ((ℝⁿ), ' ( m ) ) and ' ( m + n ) (resp. ( ( ) , ' ( m ) ) and ' ( m + n ) ), we show that a large class of moderate linear mappings acting between the space C ( ) of compactly supported generalized functions and (ℝⁿ) of generalized functions (resp. the space ( ) of Colombeau rapidly decreasing generalized functions and the space τ ( ) of temperate ones) admits generalized integral representations, with kernels belonging to specific regular subspaces of ( m + n ) (resp. τ ( m + n ) ). The main novelty is to use...

Equicontinuity and Convergent Sequences in the Spaces C ' and M

Jan Kisyński (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Characterizations of equicontinuity and convergent sequences are given for the space C ' ( ) of rapidly decreasing distributions and the space M ( ) of slowly increasing infinitely differentiable functions.

Premium evaluation for different loss distributions using utility theory

Harman Preet Singh Kapoor, Kanchan Jain (2011)

Discussiones Mathematicae Probability and Statistics

Similarity:

For any insurance contract to be mutually advantageous to the insurer and the insured, premium setting is an important task for an actuary. The maximum premium ( P m a x ) that an insured is willing to pay can be determined using utility theory. The main focus of this paper is to determine P m a x by considering different forms of the utility function. The loss random variable is assumed to follow different Statistical distributions viz Gamma, Beta, Exponential, Pareto, Weibull, Lognormal and Burr....

On the Cauchy problem for convolution equations

(2013)

Colloquium Mathematicae

Similarity:

We consider one-parameter (C₀)-semigroups of operators in the space ' ( ; m ) with infinitesimal generator of the form ( G * ) | ' ( ; m ) where G is an M m × m -valued rapidly decreasing distribution on ℝⁿ. It is proved that the Petrovskiĭ condition for forward evolution ensures not only the existence and uniqueness of the above semigroup but also its nice behaviour after restriction to whichever of the function spaces ( ; m ) , L p ( ; m ) , p ∈ [1,∞], ( a ) ( ; m ) , a ∈ ]0,∞[, or the spaces L q ' ( ; m ) , q ∈ ]1,∞], of bounded distributions.

A depth-based modification of the k-nearest neighbour method

Ondřej Vencálek, Daniel Hlubinka (2021)

Kybernetika

Similarity:

We propose a new nonparametric procedure to solve the problem of classifying objects represented by d -dimensional vectors into K 2 groups. The newly proposed classifier was inspired by the k nearest neighbour (kNN) method. It is based on the idea of a depth-based distributional neighbourhood and is called k nearest depth neighbours (kNDN) classifier. The kNDN classifier has several desirable properties: in contrast to the classical kNN, it can utilize global properties of the considered...

Local equivalence of some maximally symmetric ( 2 , 3 , 5 ) -distributions II

Matthew Randall (2025)

Archivum Mathematicum

Similarity:

We show the change of coordinates that maps the maximally symmetric ( 2 , 3 , 5 ) -distribution given by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation to the flat Cartan distribution. This establishes the local equivalence between the maximally symmetric k = 2 3 and k = 3 2 generalised Chazy distribution and the flat Cartan or Hilbert-Cartan distribution. We give the set of vector fields parametrised by solutions to the k = 2 3 and k = 3 2 generalised Chazy equation and the corresponding Ricci-flat conformal scale...

On asymmetric distributions of copula related random variables which includes the skew-normal ones

Ayyub Sheikhi, Fereshteh Arad, Radko Mesiar (2022)

Kybernetika

Similarity:

Assuming that C X , Y is the copula function of X and Y with marginal distribution functions F X ( x ) and F Y ( y ) , in this work we study the selection distribution Z = d ( X | Y T ) . We present some special cases of our proposed distribution, among them, skew-normal distribution as well as normal distribution. Some properties such as moments and moment generating function are investigated. Also, some numerical analysis is presented for illustration.

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

Another version of cosupport in D ( R )

Junquan Qin, Xiao Yan Yang (2023)

Czechoslovak Mathematical Journal

Similarity:

The goal of the article is to develop a theory dual to that of support in the derived category D ( R ) . This is done by introducing ‘big’ and ‘small’ cosupport for complexes that are different from the cosupport in D. J. Benson, S. B. Iyengar, H. Krause (2012). We give some properties for cosupport that are similar, or rather dual, to those of support for complexes, study some relations between ‘big’ and ‘small’ cosupport and give some comparisons of support and cosupport. Finally, we investigate...

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...