Displaying similar documents to “Geometry of the spectral semidistance in Banach algebras”

Formulae for joint spectral radii of sets of operators

Victor S. Shulman, Yuriĭ V. Turovskii (2002)

Studia Mathematica

Similarity:

The formula ϱ ( M ) = m a x ϱ χ ( M ) , r ( M ) is proved for precompact sets M of weakly compact operators on a Banach space. Here ϱ(M) is the joint spectral radius (the Rota-Strang radius), ϱ χ ( M ) is the Hausdorff spectral radius (connected with the Hausdorff measure of noncompactness) and r(M) is the Berger-Wang radius.

On the joint spectral radius

Vladimír Müller (1997)

Annales Polonici Mathematici

Similarity:

We prove the p -spectral radius formula for n-tuples of commuting Banach algebra elements

On the spectral multiplicity of a direct sum of operators

M. T. Karaev (2006)

Colloquium Mathematicae

Similarity:

We calculate the spectral multiplicity of the direct sum T⊕ A of a weighted shift operator T on a Banach space Y which is continuously embedded in l p and a suitable bounded linear operator A on a Banach space X.

Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs

Kinkar Ch. Das, Muhuo Liu (2016)

Czechoslovak Mathematical Journal

Similarity:

In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with n vertices and clique number ω ( 2 ω n ) are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved.

Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras

Eva Fašangová, Pedro J. Miana (2005)

Studia Mathematica

Similarity:

We investigate the weak spectral mapping property (WSMP) μ ̂ ( σ ( A ) ) ¯ = σ ( μ ̂ ( A ) ) , where A is the generator of a ₀-semigroup in a Banach space X, μ is a measure, and μ̂(A) is defined by the Phillips functional calculus. We consider the special case when X is a Banach algebra and the operators e A t , t ≥ 0, are multipliers.

Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim, Vivien G. Miller (2008)

Studia Mathematica

Similarity:

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

Spectral projections for the twisted Laplacian

Herbert Koch, Fulvio Ricci (2007)

Studia Mathematica

Similarity:

Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian L = - 1 / 2 j = 1 n [ ( x j + i y j ) ² + ( y j - i x j ) ² ] has the spectrum n + 2k = λ²: k a nonnegative integer. Let P λ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate | | P λ u | | L p ( d ) λ ϱ ( p ) | | u | | L ² ( d ) for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1), ϱ(p) = (d-2)/2 - d/p...

Local spectrum and local spectral radius of an operator at a fixed vector

Janko Bračič, Vladimír Müller (2009)

Studia Mathematica

Similarity:

Let be a complex Banach space and e ∈ a nonzero vector. Then the set of all operators T ∈ ℒ() with σ T ( e ) = σ δ ( T ) , respectively r T ( e ) = r ( T ) , is residual. This is an analogy to the well known result for a fixed operator and variable vector. The results are then used to characterize linear mappings preserving the local spectrum (or local spectral radius) at a fixed vector e.

Sharp spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates

Peng Chen (2013)

Colloquium Mathematicae

Similarity:

We consider an abstract non-negative self-adjoint operator L acting on L²(X) which satisfies Davies-Gaffney estimates. Let H L p ( X ) (p > 0) be the Hardy spaces associated to the operator L. We assume that the doubling condition holds for the metric measure space X. We show that a sharp Hörmander-type spectral multiplier theorem on H L p ( X ) follows from restriction-type estimates and Davies-Gaffney estimates. We also establish a sharp result for the boundedness of Bochner-Riesz means on H L p ( X ) . ...

Strong spectral gaps for compact quotients of products of PSL ( 2 , ) )

Dubi Kelmer, Peter Sarnak (2009)

Journal of the European Mathematical Society

Similarity:

The existence of a strong spectral gap for quotients Γ G of noncompact connected semisimple Lie groups is crucial in many applications. For congruence lattices there are uniform and very good bounds for the spectral gap coming from the known bounds towards the Ramanujan–Selberg conjectures. If G has no compact factors then for general lattices a spectral gap can still be established, but there is no uniformity and no effective bounds are known. This note is concerned with the spectral...

Uniform spectral radius and compact Gelfand transform

Alexandru Aleman, Anders Dahlner (2006)

Studia Mathematica

Similarity:

We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is K ν = s u p | | ( e - x ) - 1 | | p : x A , | | x | | p 1 , m a x | x ̂ | ν bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is C δ = s u p | | x - 1 | | p : x A , | | x | | p 1 , m i n | x ̂ | δ bounded? Both questions are related to a “uniform spectral radius” of the algebra, r ( A ) , introduced by Björk. Question (i) has an affirmative answer if and only if r ( A ) < 1 , and this result is extended to more general nonlinear extremal...

A spectral gap property for subgroups of finite covolume in Lie groups

Bachir Bekka, Yves Cornulier (2010)

Colloquium Mathematicae

Similarity:

Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation λ G / H of G on L²(G/H) has a spectral gap, that is, the restriction of λ G / H to the orthogonal complement of the constants in L²(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

A spectral gap theorem in SU ( d )

Jean Bourgain, Alex Gamburd (2012)

Journal of the European Mathematical Society

Similarity:

We establish the spectral gap property for dense subgroups of SU ( d ) ( d 2 ) , generated by finitely many elements with algebraic entries; this result was announced in [BG3]. The method of proof differs, in several crucial aspects, from that used in [BG] in the case of SU ( 2 ) .

On the zero set of the Kobayashi-Royden pseudometric of the spectral unit ball

Nikolai Nikolov, Pascal J. Thomas (2008)

Annales Polonici Mathematici

Similarity:

Given A∈ Ωₙ, the n²-dimensional spectral unit ball, we show that if B is an n×n complex matrix, then B is a “generalized” tangent vector at A to an entire curve in Ωₙ if and only if B is in the tangent cone C A to the isospectral variety at A. In the case of Ω₃, the zero set of the Kobayashi-Royden pseudometric is completely described.

Spectral synthesis and operator synthesis

K. Parthasarathy, R. Prakash (2006)

Studia Mathematica

Similarity:

Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a V ( G ) -submodule X̂ of ℬ(L²(G)) (where V ( G ) is the weak-* Haagerup tensor product L ( G ) w * h L ( G ) ), define the concept of X̂-operator synthesis and prove that a...

Schur Lemma and the Spectral Mapping Formula

Antoni Wawrzyńczyk (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let B be a complex topological unital algebra. The left joint spectrum of a set S ⊂ B is defined by the formula σ l ( S ) = ( λ ( s ) ) s S S | s - λ ( s ) s S generates a proper left ideal . Using the Schur lemma and the Gelfand-Mazur theorem we prove that σ l ( S ) has the spectral mapping property for sets S of pairwise commuting elements if (i) B is an m-convex algebra with all maximal left ideals closed, or (ii) B is a locally convex Waelbroeck algebra. The right ideal version of this result is also valid.

A short proof on lifting of projection properties in Riesz spaces

Marek Wójtowicz (1999)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let L be an Archimedean Riesz space with a weak order unit u . A sufficient condition under which Dedekind [ σ -]completeness of the principal ideal A u can be lifted to L is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of C ( X ) -spaces. Similar results are obtained for the Riesz spaces B n ( T ) , n = 1 , 2 , , of all functions of the n th Baire class on a metric space T .