Displaying similar documents to “On the Leibniz congruences”

Grzegorczyk’s Logics. Part I

Taneli Huuskonen (2015)

Formalized Mathematics

Similarity:

This article is the second in a series formalizing some results in my joint work with Prof. Joanna Golinska-Pilarek ([9] and [10]) concerning a logic proposed by Prof. Andrzej Grzegorczyk ([11]). This part presents the syntax and axioms of Grzegorczyk’s Logic of Descriptions (LD) as originally proposed by him, as well as some theorems not depending on any semantic constructions. There are both some clear similarities and fundamental differences between LD and the non-Fregean logics introduced...

An Investigation into Intuitionistic Logic with Identity

Szymon Chlebowski, Dorota Leszczyńska-Jasion (2019)

Bulletin of the Section of Logic

Similarity:

We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective.

Super-strict Implications

Guido Gherardi, Eugenio Orlandelli (2021)

Bulletin of the Section of Logic

Similarity:

This paper introduces the logics of super-strict implications, where a super-strict implication is a strengthening of C.I. Lewis' strict implication that avoids not only the paradoxes of material implication but also those of strict implication. The semantics of super-strict implications is obtained by strengthening the (normal) relational semantics for strict implication. We consider all logics of super-strict implications that are based on relational frames for modal logics in the...

Categorical Abstract Logic: Hidden Multi-Sorted Logics as Multi-Term π-Institutions

George Voutsadakis (2016)

Bulletin of the Section of Logic

Similarity:

Babenyshev and Martins proved that two hidden multi-sorted deductive systems are deductively equivalent if and only if there exists an isomorphism between their corresponding lattices of theories that commutes with substitutions. We show that the π-institutions corresponding to the hidden multi-sorted deductive systems studied by Babenyshev and Martins satisfy the multi-term condition of Gil-F´erez. This provides a proof of the result of Babenyshev and Martins by appealing to the general...

Interrelation of algebraic, semantical and logical properties for superintuitionistic and modal logics

Larisa Maksimova (1999)

Banach Center Publications

Similarity:

We consider the families 𝓛 of propositional superintuitionistic logics (s.i.l.) and NE(K) of normal modal logics (n.m.l.). It is well known that there is a duality between 𝓛 and the lattice of varieties of pseudo-boolean algebras (or Heyting algebras), and also NE(K) is dually isomorphic to the lattice of varieties of modal algebras. Many important properties of logics, for instance, Craig's interpolation property (CIP), the disjunction property (DP), the Beth property (BP), Hallden-completeness...

Identity, equality, nameability and completeness. Part II

María Manzano, Manuel Crescencio Moreno (2018)

Bulletin of the Section of Logic

Similarity:

This article is a continuation of our promenade along the winding roads of identity, equality, nameability and completeness. We continue looking for a place where all these concepts converge. We assume that identity is a binary relation between objects while equality is a symbolic relation between terms. Identity plays a central role in logic and we have looked at it from two different points of view. In one case, identity is a notion which has to be defined and, in the other case, identity...

New Modification of the Subformula Property for a Modal Logic

Mitio Takano (2020)

Bulletin of the Section of Logic

Similarity:

A modified subformula property for the modal logic KD with the additionalaxiom □ ◊(A ∨ B) ⊃ □ ◊ A ∨ □ ◊B is shown. A new modification of the notion of subformula is proposed for this purpose. This modification forms a natural extension of our former one on which modified subformula property for the modal logics K5, K5D and S4.2 has been shown ([2] and [4]). The finite model property as well as decidability for the logic follows from this.

From Intuitionism to Brouwer's Modal Logic

Zofia Kostrzycka (2020)

Bulletin of the Section of Logic

Similarity:

We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded...