The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some functorial properties of microlocalization for 𝓓-modules”

On P-extending modules.

Kamal, M.A., Elmnophy, O.A. (2005)

Acta Mathematica Universitatis Comenianae. New Series

Similarity:

Componentwise injective models of functors to DGAs

Marek Golasiński (1997)

Colloquium Mathematicae

Similarity:

The aim of this paper is to present a starting point for proving existence of injective minimal models (cf. [8]) for some systems of complete differential graded algebras.

On bounded generalized Harish-Chandra modules

Ivan Penkov, Vera Serganova (2012)

Annales de l’institut Fourier

Similarity:

Let 𝔤 be a complex reductive Lie algebra and 𝔨 𝔤 be any reductive in 𝔤 subalgebra. We call a ( 𝔤 , 𝔨 ) -module M bounded if the 𝔨 -multiplicities of M are uniformly bounded. In this paper we initiate a general study of simple bounded ( 𝔤 , 𝔨 ) -modules. We prove a strong necessary condition for a subalgebra 𝔨 to be bounded (Corollary 4.6), to admit an infinite-dimensional simple bounded ( 𝔤 , 𝔨 ) -module, and then establish a sufficient condition for a subalgebra 𝔨 to be bounded (Theorem 5.1). As a result we are...