Displaying similar documents to “On convergence of infinitely divisible distributions in a Hilbert space”

Snakes and articulated arms in an Hilbert space

Fernand Pelletier, Rebhia Saffidine (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.

On the negative dependence in Hilbert spaces with applications

Nguyen Thi Thanh Hien, Le Van Thanh, Vo Thi Hong Van (2019)

Applications of Mathematics

Similarity:

This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.

The elementary theory of distributions (II)

Jan Mikusiński, Roman Sikorski

Similarity:

CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions................................................................................

The elementary theory of distributions (I)

Jan Mikusiński, Roman Sikorski

Similarity:

CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of...