Domain of partial attraction for infinitely divisible distributions in a Hilbert space
J. Barańska (1973)
Colloquium Mathematicae
Similarity:
J. Barańska (1973)
Colloquium Mathematicae
Similarity:
Fernand Pelletier, Rebhia Saffidine (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
The purpose of this paper is to give an illustration of results on integrability of distributions and orbits of vector fields on Banach manifolds obtained in [5] and [4]. Using arguments and results of these papers, in the context of a separable Hilbert space, we give a generalization of a Theorem of accessibility contained in [3] and [6] for articulated arms and snakes in a finite dimensional Hilbert space.
M. Kłosowska (1973)
Colloquium Mathematicae
Similarity:
Nguyen Thi Thanh Hien, Le Van Thanh, Vo Thi Hong Van (2019)
Applications of Mathematics
Similarity:
This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.
Guessous, Mohamed (1997)
Journal of Convex Analysis
Similarity:
Fabrizio Durante, Giovanni Puccetti, Matthias Scherer, Steven Vanduffel (2016)
Dependence Modeling
Similarity:
B. Kopociński, E. Trybusiowa (1966)
Applicationes Mathematicae
Similarity:
Matthev O. Ojo (2001)
Kragujevac Journal of Mathematics
Similarity:
M. Kłosowska (1972)
Studia Mathematica
Similarity:
Stevan Pilipović (1988)
Publications de l'Institut Mathématique
Similarity:
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction................................................................................... 3 § 1. Terminology and notation.................................................................................... 4 § 2. Uniform and almost uniform convergence....................................................... 6 § 3. Fundamental sequences of smooth functions............................................... 6 § 4. The definition of distributions................................................................................
Jan Mikusiński, Roman Sikorski
Similarity:
CONTENTS Introduction........................................................................................................... 3 § 1. The abstraction principle............................................................................... 4 § 2. Fundamental sequences of continuous functions......................................... 5 § 3. The definition of distributions........................................................................ 9 § 4. Distributions as a generalization of...