Displaying similar documents to “Strong maximum and minimum principles for parabolic functional-differential problems with initial inequalities u ( t 0 , x ) ( ) K

Absence of global solutions to a class of nonlinear parabolic inequalities

M. Guedda (2002)

Colloquium Mathematicae

Similarity:

We study the absence of nonnegative global solutions to parabolic inequalities of the type u t - ( - Δ ) β / 2 u - V ( x ) u + h ( x , t ) u p , where ( - Δ ) β / 2 , 0 < β ≤ 2, is the β/2 fractional power of the Laplacian. We give a sufficient condition which implies that the only global solution is trivial if p > 1 is small. Among other properties, we derive a necessary condition for the existence of local and global nonnegative solutions to the above problem for the function V satisfying V ( x ) a | x | - b , where a ≥ 0, b > 0, p > 1 and V₊(x): = maxV(x),0....

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Similarity:

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions...

A pair of linear functional inequalities and a characterization of L p -norm

Dorota Krassowska, Janusz Matkowski (2005)

Annales Polonici Mathematici

Similarity:

It is shown that, under some general algebraic conditions on fixed real numbers a,b,α,β, every solution f:ℝ → ℝ of the system of functional inequalities f(x+a) ≤ f(x)+α, f(x+b) ≤ f(x)+β that is continuous at some point must be a linear function (up to an additive constant). Analogous results for three other similar simultaneous systems are presented. An application to a characterization of L p -norm is given.

Existence results for a class of nonlinear parabolic equations with two lower order terms

Ahmed Aberqi, Jaouad Bennouna, M. Hammoumi, Mounir Mekkour, Ahmed Youssfi (2014)

Applicationes Mathematicae

Similarity:

We investigate the existence of renormalized solutions for some nonlinear parabolic problems associated to equations of the form ⎧ ( e β u - 1 ) / t - d i v ( | u | p - 2 u ) + d i v ( c ( x , t ) | u | s - 1 u ) + b ( x , t ) | u | r = f in Q = Ω×(0,T), ⎨ u(x,t) = 0 on ∂Ω ×(0,T), ⎩ ( e β u - 1 ) ( x , 0 ) = ( e β u - 1 ) ( x ) in Ω. with s = (N+2)/(N+p) (p-1), c ( x , t ) ( L τ ( Q T ) ) N , τ = (N+p)/(p-1), r = (N(p-1) + p)/(N+2), b ( x , t ) L N + 2 , 1 ( Q T ) and f ∈ L¹(Q).

Carathéodory solutions of hyperbolic functional differential inequalities with first order derivatives

Adrian Karpowicz (2008)

Annales Polonici Mathematici

Similarity:

We consider the Darboux problem for a functional differential equation: ( ² u ) / ( x y ) ( x , y ) = f ( x , y , u ( x , y ) , u ( x , y ) , u / x ( x , y ) , u / y ( x , y ) ) a.e. in [0,a]×[0,b], u(x,y) = ψ(x,y) on [-a₀,a]×[-b₀,b]∖(0,a]×(0,b], where the function u ( x , y ) : [ - a , 0 ] × [ - b , 0 ] k is defined by u ( x , y ) ( s , t ) = u ( s + x , t + y ) for (s,t) ∈ [-a₀,0]×[-b₀,0]. We give a few theorems about weak and strong inequalities for this problem. We also discuss the case where the right-hand side of the differential equation is linear.

Second order quasilinear functional evolution equations

László Simon (2015)

Mathematica Bohemica

Similarity:

We consider second order quasilinear evolution equations where also the main part contains functional dependence on the unknown function. First, existence of solutions in ( 0 , T ) is proved and examples satisfying the assumptions of the existence theorem are formulated. Then a uniqueness theorem is proved. Finally, existence and some qualitative properties of the solutions in ( 0 , ) (boundedness and stabilization as t ) are shown.

The regularity of the positive part of functions in L 2 ( I ; H 1 ( Ω ) ) H 1 ( I ; H 1 ( Ω ) * ) with applications to parabolic equations

Daniel Wachsmuth (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u L 2 ( I ; H 1 ( Ω ) ) with t u L 2 ( I ; H 1 ( Ω ) * ) be given. Then we show by means of a counter-example that the positive part u + of u has less regularity, in particular it holds t u + L 1 ( I ; H 1 ( Ω ) * ) in general. Nevertheless, u + satisfies an integration-by-parts formula, which can be used to prove non-negativity of weak solutions of parabolic equations.

Bi-spaces global attractors in abstract parabolic equations

J. W. Cholewa, T. Dłotko (2003)

Banach Center Publications

Similarity:

An abstract semilinear parabolic equation in a Banach space X is considered. Under general assumptions on nonlinearity this problem is shown to generate a bounded dissipative semigroup on X α . This semigroup possesses an ( X α - Z ) -global attractor that is closed, bounded, invariant in X α , and attracts bounded subsets of X α in a ’weaker’ topology of an auxiliary Banach space Z. The abstract approach is finally applied to the scalar parabolic equation in Rⁿ and to the partly dissipative system. ...

On higher-order semilinear parabolic equations with measures as initial data

Victor Galaktionov (2004)

Journal of the European Mathematical Society

Similarity:

We consider 2 m th-order ( m 2 ) semilinear parabolic equations u t = ( Δ ) m u ± | u | p 1 u in N × + ( p > 1 ) , with Dirac’s mass δ ( x ) as the initial function. We show that for p < p 0 = 1 + 2 m / N , the Cauchy problem admits a solution u ( x , t ) which is bounded and smooth for small t > 0 , while for p p 0 such a local in time solution does not exist. This leads to a boundary layer phenomenon in constructing a proper solution via regular approximations.

Moser-Trudinger and logarithmic HLS inequalities for systems

Itai Shafrir, Gershon Wolansky (2005)

Journal of the European Mathematical Society

Similarity:

We prove several optimal Moser–Trudinger and logarithmic Hardy–Littlewood–Sobolev inequalities for systems in two dimensions. These include inequalities on the sphere S 2 , on a bounded domain Ω 2 and on all of 2 . In some cases we also address the question of existence of minimizers.

Existence, uniqueness and continuity results of weak solutions for nonlocal nonlinear parabolic problems

Tayeb Benhamoud, Elmehdi Zaouche, Mahmoud Bousselsal (2024)

Mathematica Bohemica

Similarity:

This paper is concerned with the study of a nonlocal nonlinear parabolic problem associated with the equation u t - M ( Ω φ u d x ) div ( A ( x , t , u ) u ) = g ( x , t , u ) in Ω × ( 0 , T ) , where Ω is a bounded domain of n ( n 1 ) , T > 0 is a positive number, A ( x , t , u ) is an n × n matrix of variable coefficients depending on u and M : , φ : Ω , g : Ω × ( 0 , T ) × are given functions. We consider two different assumptions on g . The existence of a weak solution for this problem is proved using the Schauder fixed point theorem for each of these assumptions. Moreover, if A ( x , t , u ) = a ( x , t ) depends only on...

Lower bounds for Schrödinger operators in H¹(ℝ)

Ronan Pouliquen (1999)

Studia Mathematica

Similarity:

We prove trace inequalities of type | | u ' | | L 2 2 + j k j | u ( a j ) | 2 λ | | u | | L 2 2 where u H 1 ( ) , under suitable hypotheses on the sequences a j j and k j j , with the first sequence increasing and the second bounded.

Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales

Tatiana Danielsson, Pernilla Johnsen (2021)

Mathematica Bohemica

Similarity:

In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in L 2 ( 0 , T ; H 0 1 ( Ω ) ) , fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation ε p t u ε ( x , t ) - · ( a ( x ε - 1 , x ε - 2 , t ε - q , t ε - r ) u ε ( x , t ) ) = f ( x , t ) , where 0 < p < q < r . The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by p , compared to the standard matching that gives rise...

Vectorial quasilinear diffusion equation with dynamic boundary condition

Nakayashiki, Ryota

Similarity:

In this paper, we consider a class of initial-boundary value problems for quasilinear PDEs, subject to the dynamic boundary conditions. Each initial-boundary problem is denoted by (S) ε with a nonnegative constant ε , and for any ε 0 , (S) ε can be regarded as a vectorial transmission system between the quasilinear equation in the spatial domain Ω , and the parabolic equation on the boundary Γ : = Ω , having a sufficient smoothness. The objective of this study is to establish a mathematical method,...

Stability of periodic stationary solutions of scalar conservation laws with space-periodic flux

Anne-Laure Dalibard (2011)

Journal of the European Mathematical Society

Similarity:

This article investigates the long-time behaviour of parabolic scalar conservation laws of the type t u + div y A ( y , u ) - Δ y u = 0 , where y N and the flux A is periodic in y . More specifically, we consider the case when the initial data is an L 1 disturbance of a stationary periodic solution. We show, under polynomial growth assumptions on the flux, that the difference between u and the stationary solution behaves in L 1 norm like a self-similar profile for large times. The proof uses a time and space change of variables...