The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur une généralisation des notions des vecteurs de Frenet et des courbures d’une courbe dans R n

Une construction de

Pierre Colmez (2012)

Rendiconti del Seminario Matematico della Università di Padova

Similarity:

Sous-groupes H -loxodromiques

Antonin Guilloux (2011)

Bulletin de la Société Mathématique de France

Similarity:

On considère une extension finie k de p , avec p un nombre premier, H un sous-groupe d’indice fini de k * et le groupe SL ( n , k ) . Nous montrons que SL ( n , k ) admet un sous-groupe p -Zariski-dense dont toutes les matrices ont leur spectre inclus dans H si et seulement si soit - 1 est dans le sous-groupe H , soit n n’est pas congru à 2 modulo 4.

Propriétés (Q) et (C). Variété commutante

Jean-Yves Charbonnel (2004)

Bulletin de la Société Mathématique de France

Similarity:

Soient X une variété algébrique complexe, lisse, irréductible, E et F deux espaces vectoriels complexes de dimension finie et μ un morphisme de X dans l’espace Lin ( E , F ) des applications linéaires de E dans F . Pour x X , on note E ( x ) et x · E le noyau et l’image de μ ( x ) , μ ¯ x le morphisme de X dans Lin ( E ( x ) , F / ( x · E ) ) qui associe à y l’application linéaire v μ ( y ) ( v ) + x · E . Soit i μ la dimension minimale de E ( x ) . On dit que μ asi i μ ¯ x est inférieur à i μ . Soient F * le dual de F , S ( F ) l’algèbre symétrique de F , μ l’idéal de 𝒪 X S ( F ) engendré par les fonctions...

Un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert

Mickaël Crampon, Ludovic Marquis (2013)

Annales mathématiques Blaise Pascal

Similarity:

On montre un lemme de Kazhdan-Margulis-Zassenhaus pour les géométries de Hilbert. Plus précisément, en toute dimension n , il existe une constante ε n > 0 telle que, pour tout ouvert proprement convexe Ω , pour tout point x Ω , tout groupe discret engendré par un nombre fini d’automorphismes de Ω qui déplacent le point x de moins de ε n est virtuellement nilpotent.