The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Submodule of free Z-module”

Z-modules

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].

Quotient Module of Z-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems...

Almost free splitters

Rüdiger Göbel, Saharon Shelah (1999)

Colloquium Mathematicae

Similarity:

Let R be a subring of the rationals. We want to investigate self splitting R-modules G, that is, such that E x t R ( G , G ) = 0 . For simplicity we will call such modules splitters (see [10]). Also other names like stones are used (see a dictionary in Ringel’s paper [8]). Our investigation continues [5]. In [5] we answered an open problem by constructing a large class of splitters. Classical splitters are free modules and torsion-free, algebraically compact ones. In [5] we concentrated on splitters which...