Displaying similar documents to “On symmetric functions and the spin characters of S n

Finite groups with two rows which differ in only one entry in character tables

Wenyang Wang, Ni Du (2021)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group. If G has two rows which differ in only one entry in the character table, we call G an RD1-group. We investigate the character tables of RD1-groups and get some necessary and sufficient conditions about RD1-groups.

Entropy of Schur–Weyl measures

Sevak Mkrtchyan (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Relative dimensions of isotypic components of N th order tensor representations of the symmetric group on n letters give a Plancherel-type measure on the space of Young diagrams with n cells and at most N rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when N n converges to a constant....

Tempered reductive homogeneous spaces

Yves Benoist, Toshiyuki Kobayashi (2015)

Journal of the European Mathematical Society

Similarity:

Let G be a semisimple algebraic Lie group and H a reductive subgroup. We find geometrically the best even integer p for which the representation of G in L 2 ( G / H ) is almost L p . As an application, we give a criterion which detects whether this representation is tempered.

The density of representation degrees

Martin Liebeck, Dan Segal, Aner Shalev (2012)

Journal of the European Mathematical Society

Similarity:

For a group G and a positive real number x , define d G ( x ) to be the number of integers less than x which are dimensions of irreducible complex representations of G . We study the asymptotics of d G ( x ) for algebraic groups, arithmetic groups and finitely generated linear groups. In particular we prove an “alternative” for finitely generated linear groups G in characteristic zero, showing that either there exists α > 0 such that d G ( x ) > x α for all large x , or G is virtually abelian (in which case d G ( x ) is bounded). ...

Spin representations and binary numbers

Henrik Winther (2024)

Archivum Mathematicum

Similarity:

We consider a construction of the fundamental spin representations of the simple Lie algebras 𝔰𝔬 ( n ) in terms of binary arithmetic of fixed width integers. This gives the spin matrices as a Lie subalgebra of a -graded associative algebra (rather than the usual -filtered Clifford algebra). Our description gives a quick way to write down the spin matrices, and gives a way to encode some extra structure, such as the real structure which is invariant under the compact real form, for some n ....

Generalized symmetry classes of tensors

Gholamreza Rafatneshan, Yousef Zamani (2020)

Czechoslovak Mathematical Journal

Similarity:

Let V be a unitary space. For an arbitrary subgroup G of the full symmetric group S m and an arbitrary irreducible unitary representation Λ of G , we study the generalized symmetry class of tensors over V associated with G and Λ . Some important properties of this vector space are investigated.

Remarks on Sekine quantum groups

Jialei Chen, Shilin Yang (2022)

Czechoslovak Mathematical Journal

Similarity:

We first describe the Sekine quantum groups 𝒜 k (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of 𝒜 k and describe their representation rings r ( 𝒜 k ) . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of r ( 𝒜 k ) .

Symmetric products of the Euclidean spaces and the spheres

Naotsugu Chinen (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By F n ( X ) , n 1 , we denote the n -th symmetric product of a metric space ( X , d ) as the space of the non-empty finite subsets of X with at most n elements endowed with the Hausdorff metric d H . In this paper we shall describe that every isometry from the n -th symmetric product F n ( X ) into itself is induced by some isometry from X into itself, where X is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the n -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence...

A problem of Kollár and Larsen on finite linear groups and crepant resolutions

Robert Guralnick, Pham Tiep (2012)

Journal of the European Mathematical Society

Similarity:

The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age 1 . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation....

Holonomy groups of flat manifolds with the R property

Rafał Lutowski, Andrzej Szczepański (2013)

Fundamenta Mathematicae

Similarity:

Let M be a flat manifold. We say that M has the R property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the R property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the R property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].

Brauer relations in finite groups

Alex Bartel, Tim Dokchitser (2015)

Journal of the European Mathematical Society

Similarity:

If G is a non-cyclic finite group, non-isomorphic G -sets X , Y may give rise to isomorphic permutation representations [ X ] [ Y ] . Equivalently, the map from the Burnside ring to the rational representation ring of G has a kernel. Its elements are called Brauer relations, and the purpose of this paper is to classify them in all finite groups, extending the Tornehave–Bouc classification in the case of p -groups.

Asymptotic values of modular multiplicities for GL 2

Sandra Rozensztajn (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We study the irreducible constituents of the reduction modulo p of irreducible algebraic representations V of the group Res K / p GL 2 for K a finite extension of p . We show that asymptotically, the multiplicity of each constituent depends only on the dimension of V and the central character of its reduction modulo p . As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.