Displaying similar documents to “Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators”

Overview of Drude-Lorentz type models and their applications

Paolo Di Sia (2014)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

This paper presents an overview of mathematical models for a better understanding of mechanical processes, as well as dynamics, at the nanoscale. After a short introduction related to semi-empirical and ab initio formulations, molecular dynamics simulations, atomic-scale finite element method, multiscale computational methods, the paper focuses on the Drude-Lorentz type models for the study of dynamics, considering the results of a recently appeared generalization of them for the nanoscale...

Modeling and Simulating Asymmetrical Conductance Changes in Gramicidin Pores

Shixin Xu, Minxin Chen, Sheereen Majd, Xingye Yue, Chun Liu (2014)

Molecular Based Mathematical Biology

Similarity:

Gramicidin A is a small and well characterized peptide that forms an ion channel in lipid membranes. An important feature of gramicidin A (gA) pore is that its conductance is affected by the electric charges near the its entrance. This property has led to the application of gramicidin A as a biochemical sensor for monitoring and quantifying a number of chemical and enzymatic reactions. Here, a mathematical model of conductance changes of gramicidin A pores in response to the presence...

Analyzing nonlocal effects in the plasmon spectra of a metal slab by the Green’s function technique for hydrodynamic model

Naijing Kang, Z.L. Miškovic, Ying-Ying Zhang, Yuan-Hong Song, You-Nian Wang (2014)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We study the dynamic response of a metal slab containing electron gas described by the hydrodynamic model with dispersion. The resulting wave equation for the perturbed electron density is solved by means of the Green’s function that satisfies Neumann boundary conditions at the endpoints of the slab. This solution is coupled with the electrostatic potential, which is expressed in terms of the Green’s function for the Poisson equation for a layered structure consisting of three dielectric...

Transmission-line laser modeling of carrier diffusion in VCSEL

Vladimir Gerasik, Jacek Miloszewski, Marek S. Wartak (2014)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

The transmission-line laser model (TLLM) is an equivalent-circuit model which provides stable and explicit matrix routines for the solution of the laser rate equations. The application of TLLM method to the analysis of a vertical-cavity surface-emitting laser (VCSEL) requires certain modifications. The theoretical basis of the model is considered, including space discretization of the inhomogeneous VCSEL cavity so that it yields the synchronization condition. The main attention is paid...

Modeling the tip-sample interaction in atomic force microscopy with Timoshenko beam theory

Julio R. Claeyssen, Teresa Tsukazan, Leticia Tonetto, Daniela Tolfo (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

A matrix framework is developed for single and multispan micro-cantilevers Timoshenko beam models of use in atomic force microscopy (AFM). They are considered subject to general forcing loads and boundary conditions for modeling tipsample interaction. Surface effects are considered in the frequency analysis of supported and cantilever microbeams. Extensive use is made of a distributed matrix fundamental response that allows to determine forced responses through convolution and to absorb...

Effects of substrate and graphene surface roughness on graphene sheet plasmons

Keenan Lyon, Z.L. Miškovic (2014)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

We study the effects of roughness in a graphene layer that lies on a substrate with rough surface on the dynamic response of such a structure. Using an analytical expression for the dielectric function of flat graphene in the optical limit allows us to tackle the effects of roughness on the sheet plasmon in graphene. We first formulate a stochastic eigenvalue problem for the plasmon dispersion in terms of the roughness parameters that include both the auto– and the cross–correlation...

Bayesian Analysis for Robust Synthesis of Nanostructures

Nader Ebrahimi, Mahmoud Shehadeh, Kristin McCullough (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Similarity:

Nanomaterials, because of their unique properties such as extremely small size and increased ratio of surface area to volume, have a great potential in many industrial applications that involve electronics, sensors, solar cells, super-strong materials, coatings, drug delivery, and nanomedicine. They have the potential also to improve the environment by direct applications of these materials to detect, prevent and remove pollutants. While nanomaterials present seemingly limitless possibilities,...

A Poisson-Boltzmann Equation Test Model for Protein in Spherical Solute Region and its Applications

Yi Jiang, Jinyong Ying, Dexuan Xie (2014)

Molecular Based Mathematical Biology

Similarity:

The Poisson-Boltzmann equation (PBE) is one important implicit solvent continuum model for calculating electrostatics of protein in ionic solvent. Several numerical algorithms and program packages have been developed but verification and comparison between them remains an interesting topic. In this paper, a PBE test model is presented for a protein in a spherical solute region, along with its analytical solution. It is then used to verify a PBE finite element solver and applied to a...

On the inverse of the adjacency matrix of a graph

Alexander Farrugia, John Baptist Gauci, Irene Sciriha (2013)

Special Matrices

Similarity:

A real symmetric matrix G with zero diagonal encodes the adjacencies of the vertices of a graph G with weighted edges and no loops. A graph associated with a n × n non–singular matrix with zero entries on the diagonal such that all its (n − 1) × (n − 1) principal submatrices are singular is said to be a NSSD. We show that the class of NSSDs is closed under taking the inverse of G. We present results on the nullities of one– and two–vertex deleted subgraphs of a NSSD. It is shown that...

Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates

The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang (2013)

Analysis and Geometry in Metric Spaces

Similarity:

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality...

Factorization of rational matrix functions and difference equations

J.S. Rodríguez, L.F. Campos (2013)

Concrete Operators

Similarity:

In the beginning of the twentieth century, Plemelj introduced the notion of factorization of matrix functions. The matrix factorization finds applications in many fields such as in the diffraction theory, in the theory of differential equations and in the theory of singular integral operators. However, the explicit formulas for the factors of the factorization are known only in a few classes of matrices. In the present paper we consider a new approach to obtain the factorization of a...

Nonexistence Results for Semilinear Equations in Carnot Groups

Fausto Ferrari, Andrea Pinamonti (2013)

Analysis and Geometry in Metric Spaces

Similarity:

In this paper, following [3], we provide some nonexistence results for semilinear equations in the the class of Carnot groups of type ★.This class, see [20], contains, in particular, all groups of step 2; like the Heisenberg group, and also Carnot groups of arbitrarly large step. Moreover, we prove some nonexistence results for semilinear equations in the Engel group, which is the simplest Carnot group that is not of type ★.