Displaying similar documents to “Holomorphic automorphisms and collective compactness in J*-algebras of operator”

Holomorphic automorphism groups in certain compact operator spaces

Carlo Petronio (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

A class of Banach spaces of compact operators in Hilbert spaces is introduced, and the holomorphic automorphism groups of the unit balls of these spaces are investigated.

On roots of the automorphism group of a circular domain in n

Jan M. Myszewski (1991)

Annales Polonici Mathematici

Similarity:

We study the properties of the group Aut(D) of all biholomorphic transformations of a bounded circular domain D in n containing the origin. We characterize the set of all possible roots for the Lie algebra of Aut(D). There exists an n-element set P such that any root is of the form α or -α or α-β for suitable α,β ∈ P.

On the CR-structure of certain linear group orbits in infinite dimensions

Wilhelm Kaup (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

For large classes of complex Banach spaces (mainly operator spaces) we consider orbits of finite rank elements under the group of linear isometries. These are (in general) real-analytic submanifolds of infinite dimension but of finite CR-codimension. We compute the polynomial convex hull of such orbits  M explicitly and show as main result that every continuous CR-function on  M has a unique extension to the polynomial convex hull which is holomorphic in a certain sense. This generalizes...

Isometries and automorphisms of the spaces of spinors.

F. J. Hervés, J. M. Isidro (1992)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

The relationships between the JB*-triple structure of a complex spin factor S and the structure of the Hilbert space H associated to S are discussed. Every surjective linear isometry L of S can be uniquely represented in the form L(x) = mu.U(x) for some conjugation commuting unitary operator U on H and some mu belonging to C, |mu|=1. Automorphisms of S are characterized as those linear maps (continuity not assumed) that preserve minimal tripotents in S and the orthogonality relations...

Bounded symmetric domains and derived geometric structures

Wilhelm Kaup (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Every homogeneous circular convex domain D C n (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group G = A u t D of all biholomorphic automorphisms of D and its isotropy subgroup K G L n , C at the origin (a maximal compact subgroup of G ). The group G acts in a natural way on the compact dual X of D (a certain compactification of C n that generalizes the Riemann sphere in case D is the unit disk in C ). Various authors have studied the orbit structure of the G -space X , here...

Lie algebraic characterization of manifolds

Janusz Grabowski, Norbert Poncin (2004)

Open Mathematics

Similarity:

Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.