The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a characterization of k -trees”

Spanning trees whose reducible stems have a few branch vertices

Pham Hoang Ha, Dang Dinh Hanh, Nguyen Thanh Loan, Ngoc Diep Pham (2021)

Czechoslovak Mathematical Journal

Similarity:

Let T be a tree. Then a vertex of T with degree one is a leaf of T and a vertex of degree at least three is a branch vertex of T . The set of leaves of T is denoted by L ( T ) and the set of branch vertices of T is denoted by B ( T ) . For two distinct vertices u , v of T , let P T [ u , v ] denote the unique path in T connecting u and v . Let T be a tree with B ( T ) . For each leaf x of T , let y x denote the nearest branch vertex to x . We delete V ( P T [ x , y x ] ) { y x } from T for all x L ( T ) . The resulting subtree of T is called the reducible stem...

The relation between the number of leaves of a tree and its diameter

Pu Qiao, Xingzhi Zhan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let L ( n , d ) denote the minimum possible number of leaves in a tree of order n and diameter d . Lesniak (1975) gave the lower bound B ( n , d ) = 2 ( n - 1 ) / d for L ( n , d ) . When d is even, B ( n , d ) = L ( n , d ) . But when d is odd, B ( n , d ) is smaller than L ( n , d ) in general. For example, B ( 21 , 3 ) = 14 while L ( 21 , 3 ) = 19 . In this note, we determine L ( n , d ) using new ideas. We also consider the converse problem and determine the minimum possible diameter of a tree with given order and number of leaves.

A lower bound for the 3-pendant tree-connectivity of lexicographic product graphs

Yaping Mao, Christopher Melekian, Eddie Cheng (2023)

Czechoslovak Mathematical Journal

Similarity:

For a connected graph G = ( V , E ) and a set S V ( G ) with at least two vertices, an S -Steiner tree is a subgraph T = ( V ' , E ' ) of G that is a tree with S V ' . If the degree of each vertex of S in T is equal to 1, then T is called a pendant S -Steiner tree. Two S -Steiner trees are if they share no vertices other than S and have no edges in common. For S V ( G ) and | S | 2 , the pendant tree-connectivity τ G ( S ) is the maximum number of internally disjoint pendant S -Steiner trees in G , and for k 2 , the k -pendant tree-connectivity τ k ( G ) is the...

On graceful colorings of trees

Sean English, Ping Zhang (2017)

Mathematica Bohemica

Similarity:

A proper coloring c : V ( G ) { 1 , 2 , ... , k } , k 2 of a graph G is called a graceful k -coloring if the induced edge coloring c ' : E ( G ) { 1 , 2 , ... , k - 1 } defined by c ' ( u v ) = | c ( u ) - c ( v ) | for each edge u v of G is also proper. The minimum integer k for which G has a graceful k -coloring is the graceful chromatic number χ g ( G ) . It is known that if T is a tree with maximum degree Δ , then χ g ( T ) 5 3 Δ and this bound is best possible. It is shown for each integer Δ 2 that there is an infinite class of trees T with maximum degree Δ such that χ g ( T ) = 5 3 Δ . In particular, we investigate for each...

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...

Horocyclic products of trees

Laurent Bartholdi, Markus Neuhauser, Wolfgang Woess (2008)

Journal of the European Mathematical Society

Similarity:

Let T 1 , , T d be homogeneous trees with degrees q 1 + 1 , , q d + 1 3 , respectively. For each tree, let 𝔥 : T j be the Busemann function with respect to a fixed boundary point (end). Its level sets are the horocycles. The horocyclic product of T 1 , , T d is the graph 𝖣𝖫 ( q 1 , , q d ) consisting of all d -tuples x 1 x d T 1 × × T d with 𝔥 ( x 1 ) + + 𝔥 ( x d ) = 0 , equipped with a natural neighbourhood relation. In the present paper, we explore the geometric, algebraic, analytic and probabilistic properties of these graphs and their isometry groups. If d = 2 and q 1 = q 2 = q then we obtain a Cayley graph...

The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei, Seyed S. S. Amiri (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

Distance matrices perturbed by Laplacians

Balaji Ramamurthy, Ravindra Bhalchandra Bapat, Shivani Goel (2020)

Applications of Mathematics

Similarity:

Let T be a tree with n vertices. To each edge of T we assign a weight which is a positive definite matrix of some fixed order, say, s . Let D i j denote the sum of all the weights lying in the path connecting the vertices i and j of T . We now say that D i j is the distance between i and j . Define D : = [ D i j ] , where D i i is the s × s null matrix and for i j , D i j is the distance between i and j . Let G be an arbitrary connected weighted graph with n vertices, where each weight is a positive definite matrix of order...

The Turán number of the graph 3 P 4

Halina Bielak, Sebastian Kieliszek (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let e x ( n , G ) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P i denote a path consisting of i vertices and let m P i denote m disjoint copies of P i . In this paper we count e x ( n , 3 P 4 ) .

Recognizability of finite groups by Suzuki group

Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2019)

Archivum Mathematicum

Similarity:

Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G S z ( q ) if and only if 𝒮 ( G ) 𝒮 ( S z ( q ) ) , where q = 2 2 m + 1 8 .

Quasi-tree graphs with the minimal Sombor indices

Yibo Li, Huiqing Liu, Ruiting Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

The Sombor index S O ( G ) of a graph G is the sum of the edge weights d G 2 ( u ) + d G 2 ( v ) of all edges u v of G , where d G ( u ) denotes the degree of the vertex u in G . A connected graph G = ( V , E ) is called a quasi-tree if there exists u V ( G ) such that G - u is a tree. Denote 𝒬 ( n , k ) = { G : G is a quasi-tree graph of order n with G - u being a tree and d G ( u ) = k } . We determined the minimum and the second minimum Sombor indices of all quasi-trees in 𝒬 ( n , k ) . Furthermore, we characterized the corresponding extremal graphs, respectively.