Displaying similar documents to “Uniquely partitionable planar graphs with respect to properties having a forbidden tree”

Uniquely partitionable graphs

Jozef Bucko, Marietjie Frick, Peter Mihók, Roman Vasky (1997)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition of the vertex set V(G) into subsets V₁, ...,Vₙ such that the subgraph G [ V i ] induced by V i has property i ; i = 1,...,n. A graph G is said to be uniquely (₁, ...,ₙ)-partitionable if G has exactly one (₁,...,ₙ)-partition. A property is called hereditary if every subgraph of every graph with property also has property . If every graph that is a disjoint union of two graphs that have property also has property...

The order of uniquely partitionable graphs

Izak Broere, Marietjie Frick, Peter Mihók (1997)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by V i has property i . If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.

Rotation and jump distances between graphs

Gary Chartrand, Heather Gavlas, Héctor Hevia, Mark A. Johnson (1997)

Discussiones Mathematicae Graph Theory

Similarity:

A graph H is obtained from a graph G by an edge rotation if G contains three distinct vertices u,v, and w such that uv ∈ E(G), uw ∉ E(G), and H = G-uv+uw. A graph H is obtained from a graph G by an edge jump if G contains four distinct vertices u,v,w, and x such that uv ∈ E(G), wx∉ E(G), and H = G-uv+wx. If a graph H is obtained from a graph G by a sequence of edge jumps, then G is said to be j-transformed into H. It is shown that for every two graphs G and H of the same order (at least...

Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties

Izak Broere, Jozef Bucko, Peter Mihók (2002)

Discussiones Mathematicae Graph Theory

Similarity:

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G [ V i ] i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if i and j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.

Reducible properties of graphs

P. Mihók, G. Semanišin (1995)

Discussiones Mathematicae Graph Theory

Similarity:

Let L be the set of all hereditary and additive properties of graphs. For P₁, P₂ ∈ L, the reducible property R = P₁∘P₂ is defined as follows: G ∈ R if and only if there is a partition V(G) = V₁∪ V₂ of the vertex set of G such that V G P and V G P . The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the decomposition of a reducible property into irreducible ones.

Edge-connectivity of strong products of graphs

Bostjan Bresar, Simon Spacapan (2007)

Discussiones Mathematicae Graph Theory

Similarity:

The strong product G₁ ⊠ G₂ of graphs G₁ and G₂ is the graph with V(G₁)×V(G₂) as the vertex set, and two distinct vertices (x₁,x₂) and (y₁,y₂) are adjacent whenever for each i ∈ 1,2 either x i = y i or x i y i E ( G i ) . In this note we show that for two connected graphs G₁ and G₂ the edge-connectivity λ (G₁ ⊠ G₂) equals minδ(G₁ ⊠ G₂), λ(G₁)(|V(G₂)| + 2|E(G₂)|), λ(G₂)(|V(G₁)| + 2|E(G₁)|). In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs.

Acyclic reducible bounds for outerplanar graphs

Mieczysław Borowiecki, Anna Fiedorowicz, Mariusz Hałuszczak (2009)

Discussiones Mathematicae Graph Theory

Similarity:

For a given graph G and a sequence ₁, ₂,..., ₙ of additive hereditary classes of graphs we define an acyclic (₁, ₂,...,Pₙ)-colouring of G as a partition (V₁, V₂,...,Vₙ) of the set V(G) of vertices which satisfies the following two conditions: 1. G [ V i ] i for i = 1,...,n, 2. for every pair i,j of distinct colours the subgraph induced in G by the set of edges uv such that u V i and v V j is acyclic. A class R = ₁ ⊙ ₂ ⊙ ... ⊙ ₙ is defined as the set of the graphs having an acyclic (₁, ₂,...,Pₙ)-colouring....

Clopen graphs

Stefan Geschke (2013)

Fundamenta Mathematicae

Similarity:

A graph G on a topological space X as its set of vertices is clopen if the edge relation of G is a clopen subset of X² without the diagonal. We study clopen graphs on Polish spaces in terms of their finite induced subgraphs and obtain information about their cochromatic numbers. In this context we investigate modular profinite graphs, a class of graphs obtained from finite graphs by taking inverse limits. This continues the investigation of continuous colorings on Polish spaces and their...

The decomposability of additive hereditary properties of graphs

Izak Broere, Michael J. Dorfling (2000)

Discussiones Mathematicae Graph Theory

Similarity:

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G [ E i ] , the subgraph of G induced by E i , is in i , for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such...

Radio numbers for generalized prism graphs

Paul Martinez, Juan Ortiz, Maggy Tomova, Cindy Wyels (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A radio labeling is an assignment c:V(G) → N such that every distinct pair of vertices u,v satisfies the inequality d(u,v) + |c(u)-c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum value. The radio number of G, rn(G), is the minimum span over all radio labelings of G. Generalized prism graphs, denoted Z n , s , s ≥ 1, n ≥ s, have vertex set (i,j) | i = 1,2 and j = 1,...,n and edge set ((i,j),(i,j ±1)) ∪ ((1,i),(2,i+σ)) | σ = -⌊(s-1)/2⌋...,0,...,⌊s/2⌋. In this paper we determine...

Generalized chromatic numbers and additive hereditary properties of graphs

Izak Broere, Samantha Dorfling, Elizabeth Jonck (2002)

Discussiones Mathematicae Graph Theory

Similarity:

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number χ ( ) is defined as follows: χ ( ) = n iff ⊆ ⁿ but n - 1 . We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.

A Finite Characterization and Recognition of Intersection Graphs of Hypergraphs with Rank at Most 3 and Multiplicity at Most 2 in the Class of Threshold Graphs

Yury Metelsky, Kseniya Schemeleva, Frank Werner (2017)

Discussiones Mathematicae Graph Theory

Similarity:

We characterize the class [...] L32 L 3 2 of intersection graphs of hypergraphs with rank at most 3 and multiplicity at most 2 by means of a finite list of forbidden induced subgraphs in the class of threshold graphs. We also give an O(n)-time algorithm for the recognition of graphs from [...] L32 L 3 2 in the class of threshold graphs, where n is the number of vertices of a tested graph.

Unique factorization theorem

Peter Mihók (2000)

Discussiones Mathematicae Graph Theory

Similarity:

A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph G [ V i ] of G induced by Vi belongs to i ; i = 1,2,...,n. A property is said...

The hull number of strong product graphs

A.P. Santhakumaran, S.V. Ullas Chandran (2011)

Discussiones Mathematicae Graph Theory

Similarity:

For a connected graph G with at least two vertices and S a subset of vertices, the convex hull [ S ] G is the smallest convex set containing S. The hull number h(G) is the minimum cardinality among the subsets S of V(G) with [ S ] G = V ( G ) . Upper bound for the hull number of strong product G ⊠ H of two graphs G and H is obtainted. Improved upper bounds are obtained for some class of strong product graphs. Exact values for the hull number of some special classes of strong product graphs are obtained. Graphs...

On 2-periodic graphs of a certain graph operator

Ivan Havel, Bohdan Zelinka (2001)

Discussiones Mathematicae Graph Theory

Similarity:

We deal with the graph operator P o w ¯ defined to be the complement of the square of a graph: P o w ¯ ( G ) = P o w ( G ) ¯ . Motivated by one of many open problems formulated in [6] we look for graphs that are 2-periodic with respect to this operator. We describe a class of bipartite graphs possessing the above mentioned property and prove that for any m,n ≥ 6, the complete bipartite graph K m , n can be decomposed in two edge-disjoint factors from . We further show that all the incidence graphs of Desarguesian finite projective...

ℓ²-homology and planar graphs

Timothy A. Schroeder (2013)

Colloquium Mathematicae

Similarity:

In his 1930 paper, Kuratowski proves that a finite graph Γ is planar if and only if it does not contain a subgraph that is homeomorphic to K₅, the complete graph on five vertices, or K 3 , 3 , the complete bipartite graph on six vertices. This result is also attributed to Pontryagin. In this paper we present an ℓ²-homological method for detecting non-planar graphs. More specifically, we view a graph Γ as the nerve of a related Coxeter system and construct the associated Davis complex, Σ Γ . We...

Bounding the Openk-Monopoly Number of Strong Product Graphs

Dorota Kuziak, Iztok Peterin, Ismael G. Yero (2018)

Discussiones Mathematicae Graph Theory

Similarity:

Let G = (V, E) be a simple graph without isolated vertices and minimum degree δ, and let k ∈ 1 − ⌈δ/2⌉, . . . , ⌊δ/2⌋ be an integer. Given a set M ⊂ V, a vertex v of G is said to be k-controlled by M if [...] δM(v)≥δG(v)2+k δ M ( v ) δ G ( v ) 2 + k , where δM(v) represents the number of neighbors of v in M and δG(v) the degree of v in G. A set M is called an open k-monopoly if every vertex v of G is k-controlled by M. The minimum cardinality of any open k-monopoly is the open k-monopoly number of G. In this...

New edge neighborhood graphs

Ali A. Ali, Salar Y. Alsardary (1997)

Czechoslovak Mathematical Journal

Similarity:

Let G be an undirected simple connected graph, and e = u v be an edge of G . Let N G ( e ) be the subgraph of G induced by the set of all vertices of G which are not incident to e but are adjacent to u or v . Let 𝒩 e be the class of all graphs H such that, for some graph G , N G ( e ) H for every edge e of G . Zelinka [3] studied edge neighborhood graphs and obtained some special graphs in 𝒩 e . Balasubramanian and Alsardary [1] obtained some other graphs in 𝒩 e . In this paper we given some new graphs in 𝒩 e .

Factorizations of properties of graphs

Izak Broere, Samuel John Teboho Moagi, Peter Mihók, Roman Vasky (1999)

Discussiones Mathematicae Graph Theory

Similarity:

A property of graphs is any isomorphism closed class of simple graphs. For given properties of graphs ₁,₂,...,ₙ a vertex (₁, ₂, ...,ₙ)-partition of a graph G is a partition V₁,V₂,...,Vₙ of V(G) such that for each i = 1,2,...,n the induced subgraph G [ V i ] has property i . The class of all graphs having a vertex (₁, ₂, ...,ₙ)-partition is denoted by ₁∘₂∘...∘ₙ. A property is said to be reducible with respect to a lattice of properties of graphs if there are n ≥ 2 properties ₁,₂,...,ₙ ∈ such that...

Independent cycles and paths in bipartite balanced graphs

Beata Orchel, A. Paweł Wojda (2008)

Discussiones Mathematicae Graph Theory

Similarity:

Bipartite graphs G = (L,R;E) and H = (L’,R’;E’) are bi-placeabe if there is a bijection f:L∪R→ L’∪R’ such that f(L) = L’ and f(u)f(v) ∉ E’ for every edge uv ∈ E. We prove that if G and H are two bipartite balanced graphs of order |G| = |H| = 2p ≥ 4 such that the sizes of G and H satisfy ||G|| ≤ 2p-3 and ||H|| ≤ 2p-2, and the maximum degree of H is at most 2, then G and H are bi-placeable, unless G and H is one of easily recognizable couples of graphs. This result implies easily that...