The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A version of non-Hamiltonian Liouville equation”

On the generalized Avez method

Antoni Leon Dawidowicz (1992)

Annales Polonici Mathematici

Similarity:

A generalization of the Avez method of construction of an invariant measure is presented.

Invariant extension of Haar measure

Antal Járai

Similarity:

CONTENTS§1. Introduction...............................................................5§2. Covariant extension of measures..............................6§3. An invariant extension of Haar measure..................15§4. Covariant extension of Lebesgue measure.............22References....................................................................26

RUC systems in rearrangement invariant spaces

P. G. Dodds, E. M. Semenov, F. A. Sukochev (2002)

Studia Mathematica

Similarity:

We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Similarity:

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits...

A simple proof of the non-integrability of the first and the second Painlevé equations

Henryk Żołądek (2011)

Banach Center Publications

Similarity:

The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.

On nonmeasurable selectors of countable group actions

Piotr Zakrzewski (2009)

Fundamenta Mathematicae

Similarity:

Given a set X, a countable group H acting on it and a σ-finite H-invariant measure m on X, we study conditions which imply that each selector of H-orbits is nonmeasurable with respect to any H-invariant extension of m.