The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module”

Torsion Z-module and Torsion-free Z-module

Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama (2014)

Formalized Mathematics

Similarity:

In this article, we formalize a torsion Z-module and a torsionfree Z-module. Especially, we prove formally that finitely generated torsion-free Z-modules are finite rank free. We also formalize properties related to rank of finite rank free Z-modules. The notion of Z-module is necessary for solving lattice problems, LLL (Lenstra, Lenstra, and Lov´asz) base reduction algorithm [20], cryptographic systems with lattice [21], and coding theory [11].

Free ℤ-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of...

Generalized lifting modules.

Wang, Yongduo, Ding, Nanqing (2006)

International Journal of Mathematics and Mathematical Sciences

Similarity: