Free ℤ-module

Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama

Formalized Mathematics (2012)

  • Volume: 20, Issue: 4, page 275-280
  • ISSN: 1426-2630

Abstract

top
In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of Z-module.

How to cite

top

Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. "Free ℤ-module." Formalized Mathematics 20.4 (2012): 275-280. <http://eudml.org/doc/267931>.

@article{YuichiFuta2012,
abstract = {In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of Z-module.},
author = {Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {275-280},
title = {Free ℤ-module},
url = {http://eudml.org/doc/267931},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Yasunari Shidama
TI - Free ℤ-module
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 4
SP - 275
EP - 280
AB - In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of Z-module.
LA - eng
UR - http://eudml.org/doc/267931
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. [3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. [4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. [5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  6. [6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  7. [7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  8. [8] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. FormalizedMathematics, 6(3):411-415, 1997. 
  9. [9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  10. [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012, doi: 10.2478/v10037-012-0007-z.[Crossref] Zbl1276.94012
  11. [11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of Z-module. Formalized Mathematics, 20(3):205-214, 2012, doi: 10.2478/v10037-012-0024-y.[Crossref] Zbl06213839
  12. [12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990. 
  13. [13] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  14. [14] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990. 
  15. [15] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002. Zbl1140.94010
  16. [16] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  17. [17] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990. 
  18. [18] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999. 
  19. [19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003. 
  20. [20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  21. [21] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990. 
  22. [22] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  23. [23] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  24. [24] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990. 
  25. [25] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  26. [26] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  27. [27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  28. [28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

Citations in EuDML Documents

top
  1. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Submodule of free Z-module
  2. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Matrix of ℤ-module1
  3. Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module
  4. Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama, Torsion Z-module and Torsion-free Z-module
  5. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Torsion Part of ℤ-module
  6. Yuichi Futa, Yasunari Shidama, Divisible ℤ-modules

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.