The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Torsion Z-module and Torsion-free Z-module”

Torsion Part of ℤ-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2015)

Formalized Mathematics

Similarity:

In this article, we formalize in Mizar [7] the definition of “torsion part” of ℤ-module and its properties. We show ℤ-module generated by the field of rational numbers as an example of torsion-free non free ℤ-modules. We also formalize the rank-nullity theorem over finite-rank free ℤ-modules (previously formalized in [1]). ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems with lattices [24].

Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module

Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2014)

Formalized Mathematics

Similarity:

In this article, we formalize some basic facts of Z-module. In the first section, we discuss the rank of submodule of Z-module and its properties. Especially, we formally prove that the rank of any Z-module is equal to or more than that of its submodules, and vice versa, and that there exists a submodule with any given rank that satisfies the above condition. In the next section, we mention basic facts of linear transformations between two Z-modules. In this section, we define homomorphism...

Free ℤ-module

Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)

Formalized Mathematics

Similarity:

In this article we formalize a free ℤ-module and its rank. We formally prove that for a free finite rank ℤ-module V , the number of elements in its basis, that is a rank of the ℤ-module, is constant regardless of the selection of its basis. ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattice [15]. Some theorems in this article are described by translating theorems in [21] and [8] into theorems of...

Divisible ℤ-modules

Yuichi Futa, Yasunari Shidama (2016)

Formalized Mathematics

Similarity:

In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8]. ...

A functorial approach to the behaviour of multidimensional control systems

Jean-François Pommaret, Alban Quadrat (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

We show how to use the extension and torsion functors in order to compute the torsion submodule of a differential module associated with a multidimensional control system. In particular, we show that the concept of the weak primeness of matrices corresponds to the torsion-freeness of a certain module.