Divisible ℤ-modules

Yuichi Futa; Yasunari Shidama

Formalized Mathematics (2016)

  • Volume: 24, Issue: 1, page 37-47
  • ISSN: 1426-2630

Abstract

top
In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

How to cite

top

Yuichi Futa, and Yasunari Shidama. "Divisible ℤ-modules." Formalized Mathematics 24.1 (2016): 37-47. <http://eudml.org/doc/286752>.

@article{YuichiFuta2016,
abstract = {In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].},
author = {Yuichi Futa, Yasunari Shidama},
journal = {Formalized Mathematics},
keywords = {divisible vector; divisible ℤ-module; divisible -module},
language = {eng},
number = {1},
pages = {37-47},
title = {Divisible ℤ-modules},
url = {http://eudml.org/doc/286752},
volume = {24},
year = {2016},
}

TY - JOUR
AU - Yuichi Futa
AU - Yasunari Shidama
TI - Divisible ℤ-modules
JO - Formalized Mathematics
PY - 2016
VL - 24
IS - 1
SP - 37
EP - 47
AB - In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].
LA - eng
KW - divisible vector; divisible ℤ-module; divisible -module
UR - http://eudml.org/doc/286752
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17. Zbl06512423
  4. [4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  5. [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. 
  6. [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  8. [8] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013. 
  9. [9] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z. Zbl1276.94012
  10. [10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y. Zbl06213839
  11. [11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free ℤ-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x. Zbl06213848
  12. [12] Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free Z-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028. Zbl1316.13012
  13. [13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Torsion part of ℤ-module. Formalized Mathematics, 23(4):297-307, 2015. doi:10.1515/forma-2015-0024. Zbl1334.13008
  14. [14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  15. [15] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982. 
  16. [16] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002. Zbl1140.94010
  17. [17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990. 
  18. [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  19. [19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  20. [20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.  

NotesEmbed ?

top

You must be logged in to post comments.