Displaying similar documents to “Mild solution of fractional order differential equations with not instantaneous impulses”

Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain

Tariboon Jessada, Sotiris K. Ntouyas, Suphawat Asawasamrit, Chanon Promsakon (2017)

Open Mathematics

Similarity:

In this paper, we investigate the existence of positive solutions for Hadamard type fractional differential system with coupled nonlocal fractional integral boundary conditions on an infinite domain. Our analysis relies on Guo-Krasnoselskii’s and Leggett-Williams fixed point theorems. The obtained results are well illustrated with the aid of examples.

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

Similarity:

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

Hybrid fractional integro-differential inclusions

Sotiris K. Ntouyas, Sorasak Laoprasittichok, Jessada Tariboon (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.

Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations

Anguraj, A., Karthikeyan, P. (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37 In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.

Boundary value problems for differential inclusions with fractional order

Mouffak Benchohra, Samira Hamani (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this paper, we shall establish sufficient conditions for the existence of solutions for a boundary value problem for fractional differential inclusions. Both cases of convex valued and nonconvex valued right hand sides are considered.

Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems

Choukri Derbazi, Hadda Hammouche (2021)

Mathematica Bohemica

Similarity:

We study the existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems. Our results are based on Schauder's fixed point theorem and the Banach contraction principle fixed point theorem. Examples are provided to illustrate the main results.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.

The general solution of impulsive systems with Riemann-Liouville fractional derivatives

Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)

Open Mathematics

Similarity:

In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.

Existence results for nonlocal boundary value problems for fractional differential equations and inclusions with fractional integral boundary conditions

Sotiris K. Ntouyas (2013)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

This paper studies a new class of nonlocal boundary value problems of nonlinear differential equations and inclusions of fractional order with fractional integral boundary conditions. Some new existence results are obtained by using standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also discussed.