Displaying similar documents to “On the existence of five nontrivial solutions for resonant problems with p-Laplacian”

On the principal eigencurve of the p-Laplacian related to the Sobolev trace embedding

Abdelouahed El Khalil, Mohammed Ouanan (2005)

Applicationes Mathematicae

Similarity:

We prove that for any λ ∈ ℝ, there is an increasing sequence of eigenvalues μₙ(λ) for the nonlinear boundary value problem ⎧ Δ u = | u | p - 2 u in Ω, ⎨ ⎩ | u | p - 2 u / ν = λ ϱ ( x ) | u | p - 2 u + μ | u | p - 2 u on crtial ∂Ω and we show that the first one μ₁(λ) is simple and isolated; we also prove some results about variations of the density ϱ and the continuity with respect to the parameter λ.

Symmetry breaking in the minimization of the first eigenvalue for the composite clamped punctured disk

Claudia Anedda, Fabrizio Cuccu (2015)

Applicationes Mathematicae

Similarity:

Let D₀=x∈ ℝ²: 0<|x|<1 be the unit punctured disk. We consider the first eigenvalue λ₁(ρ ) of the problem Δ² u =λ ρ u in D₀ with Dirichlet boundary condition, where ρ is an arbitrary function that takes only two given values 0 < α < β and is subject to the constraint D ρ d x = α γ + β ( | D | - γ ) for a fixed 0 < γ < |D₀|. We will be concerned with the minimization problem ρ ↦ λ₁(ρ). We show that, under suitable conditions on α, β and γ, the minimizer does not inherit the radial symmetry of the...

On the Dirichlet problem associated with the Dunkl Laplacian

Mohamed Ben Chrouda (2016)

Annales Polonici Mathematici

Similarity:

This paper deals with the questions of the existence and uniqueness of a solution to the Dirichlet problem associated with the Dunkl Laplacian Δ k as well as the hypoellipticity of Δ k on noninvariant open sets.

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations

Alexandru Kristály, Vicenţiu Rădulescu (2009)

Studia Mathematica

Similarity:

Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem - Δ g ω + α ( σ ) ω = K ̃ ( λ , σ ) f ( ω ) , σ ∈ M, ω ∈ H₁²(M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, Δ g stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These...

On Fredholm alternative for certain quasilinear boundary value problems

Pavel Drábek (2002)

Mathematica Bohemica

Similarity:

We study the Dirichlet boundary value problem for the p -Laplacian of the form - Δ p u - λ 1 | u | p - 2 u = f in Ω , u = 0 on Ω , where Ω N is a bounded domain with smooth boundary Ω , N 1 , p > 1 , f C ( Ω ¯ ) and λ 1 > 0 is the first eigenvalue of Δ p . We study the geometry of the energy functional E p ( u ) = 1 p Ω | u | p - λ 1 p Ω | u | p - Ω f u and show the difference between the case 1 < p < 2 and the case p > 2 . We also give the characterization of the right hand sides f for which the above Dirichlet problem is solvable and has multiple solutions.

Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole

M. Sango (2001)

Colloquium Mathematicae

Similarity:

We investigate the behaviour of a sequence λ s , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains Ω s , s = 1,2,..., obtained by removing from a given domain Ω a set E s whose diameter vanishes when s → ∞. We estimate the deviation of λ s from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.

Eigenvalue asymptotics for Neumann Laplacian in domains with ultra-thin cusps

Victor Ivrii (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

Asymptotics with sharp remainder estimates are recovered for number N ( τ ) of eigenvalues of the generalized Maxwell problem and for related Laplacians which are similar to Neumann Laplacian. We consider domains with ultra-thin cusps (with exp ( - | x | m + 1 ) width ; m &gt; 0 ) and recover eigenvalue asymptotics with sharp remainder estimates.

New bounds on the Laplacian spectral ratio of connected graphs

Zhen Lin, Min Cai, Jiajia Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let G be a simple connected undirected graph. The Laplacian spectral ratio of G is defined as the quotient between the largest and second smallest Laplacian eigenvalues of G , which is an important parameter in graph theory and networks. We obtain some bounds of the Laplacian spectral ratio in terms of the number of the spanning trees and the sum of powers of the Laplacian eigenvalues. In addition, we study the extremal Laplacian spectral ratio among trees with n vertices, which improves...

Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients

Yu Zhang, Hai Bi, Yidu Yang (2021)

Applications of Mathematics

Similarity:

In this paper, using a new correction to the Crouzeix-Raviart finite element eigenvalue approximations, we obtain asymptotic lower bounds of eigenvalues for the Steklov eigenvalue problem with variable coefficients on d -dimensional domains ( d = 2 , 3 ). In addition, we prove that the corrected eigenvalues converge to the exact ones from below. The new result removes the conditions of eigenfunction being singular and eigenvalue being large enough, which are usually required in the existing arguments...

The eigenvalues of symmetric Sturm-Liouville problem and inverse potential problem, based on special matrix and product formula

Chein-Shan Liu, Botong Li (2024)

Applications of Mathematics

Similarity:

The Sturm-Liouville eigenvalue problem is symmetric if the coefficients are even functions and the boundary conditions are symmetric. The eigenfunction is expressed in terms of orthonormal bases, which are constructed in a linear space of trial functions by using the Gram-Schmidt orthonormalization technique. Then an n -dimensional matrix eigenvalue problem is derived with a special matrix 𝐀 : = [ a i j ] , that is, a i j = 0 if i + j is odd.Based on the product formula, an integration method with a fictitious...

A lower bound sequence for the minimum eigenvalue of Hadamard product of an M -matrix and its inverse

Wenlong Zeng, Jianzhou Liu (2022)

Czechoslovak Mathematical Journal

Similarity:

We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an M -matrix and its inverse, in terms of an S -type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases.