Displaying similar documents to “Minimum energy control of fractional positive continuous-time linear systems with bounded inputs”

Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders

Łukasz Sajewski (2017)

International Journal of Applied Mathematics and Computer Science

Similarity:

Reachability and minimum energy control of descriptor fractional discrete-time linear systems with different fractional orders are addressed. Using the Weierstrass-Kronecker decomposition theorem of the regular pencil, a solution to the state equation of descriptor fractional discrete-time linear systems with different fractional orders is given. The reachability condition of this class of systems is presented and used for solving the minimum energy control problem. The discussion is...

Optimal control problem and maximum principle for fractional order cooperative systems

G. M. Bahaa (2019)

Kybernetika

Similarity:

In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered...

Robust fractional adaptive control based on the strictly Positive Realness Condition

Samir Ladaci, Abdelfatah Charef, Jean Jacques Loiseau (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper presents a new approach to robust adaptive control, using fractional order systems as parallel feedforward in the adaptation loop. The problem is that adaptive control systems may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances. One of the classical robust adaptive control solutions to these problems makes use of parallel feedforward and simplified adaptive controllers based on the concept of positive realness. The proposed...

Chaos synchronization of a fractional nonautonomous system

Zakia Hammouch, Toufik Mekkaoui (2014)

Nonautonomous Dynamical Systems

Similarity:

In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the effectiveness of the proposed methods.

Design of unknown input fractional-order observers for fractional-order systems

Ibrahima N'Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach,...

Boubaker hybrid functions and their application to solve fractional optimal control and fractional variational problems

Kobra Rabiei, Yadollah Ordokhani (2018)

Applications of Mathematics

Similarity:

A new hybrid of block-pulse functions and Boubaker polynomials is constructed to solve the inequality constrained fractional optimal control problems (FOCPs) with quadratic performance index and fractional variational problems (FVPs). First, the general formulation of the Riemann-Liouville integral operator for Boubaker hybrid function is presented for the first time. Then it is applied to reduce the problems to optimization problems, which can be solved by the existing method. In this...

Distributed optimization via active disturbance rejection control: A nabla fractional design

Yikun Zeng, Yiheng Wei, Shuaiyu Zhou, Dongdong Yue (2024)

Kybernetika

Similarity:

This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal...

Modelling of Piezothermoelastic Beam with Fractional Order Derivative

Rajneesh Kumar, Poonam Sharma (2016)

Curved and Layered Structures

Similarity:

This paper deals with the study of transverse vibrations in piezothermoelastic beam resonators with fractional order derivative. The fractional order theory of thermoelasticity developed by Sherief et al. [1] has been used to study the problem. The expressions for frequency shift and damping factor are derived for a thermo micro-electromechanical (MEM) and thermo nano-electromechanical (NEM) beam resonators clamped on one side and free on another. The effect of fractional order derivative...