Displaying similar documents to “Small and large time stability of the time taken for a Lévy process to cross curved boundaries”

Weak convergence of mutually independent X B and X A under weak convergence of X X B - X A

W. Szczotka (2006)

Applicationes Mathematicae

Similarity:

For each n ≥ 1, let v n , k , k 1 and u n , k , k 1 be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means v̅ₙ and u̅̅ₙ, respectively. Let X B ( t ) = ( 1 / c ) j = 1 [ n t ] ( v n , j - v ̅ ) , X A ( t ) = ( 1 / c ) j = 1 [ n t ] ( u n , j - u ̅ ̅ ) , t ≥ 0, and X = X B - X A . The main result gives conditions under which the weak convergence X X , where X is a Lévy process, implies X B X B and X A X A , where X B and X A are mutually independent Lévy processes and X = X B - X A .

Limit distributions for multitype branching processes of m -ary search trees

Brigitte Chauvin, Quansheng Liu, Nicolas Pouyanne (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let m 3 be an integer. The so-calledis a discrete time Markov chain which is very popular in theoretical computer science, modelling famous algorithms used in searching and sorting. This random process satisfies a well-known phase transition: when m 26 , the asymptotic behavior of the process is Gaussian, but for m 27 it is no longer Gaussian and a limit W D T of a complex-valued martingale arises. In this paper, we consider the multitype branching process which is the continuous time version of...

Lévy processes conditioned on having a large height process

Mathieu Richard (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In the present work, we consider spectrally positive Lévy processes ( X t , t 0 ) not drifting to + and we are interested in conditioning these processes to reach arbitrarily large heights (in the sense of the height process associated with X ) before hitting 0 . This way we obtain a new conditioning of Lévy processes to stay positive. The (honest) law x of this conditioned process (starting at x g t ; 0 ) is defined as a Doob h -transform via a martingale. For Lévy processes with infinite variation paths,...

Asymptotic behavior of a stochastic combustion growth process

Alejandro Ramírez, Vladas Sidoravicius (2004)

Journal of the European Mathematical Society

Similarity:

We study a continuous time growth process on the d -dimensional hypercubic lattice 𝒵 d , which admits a phenomenological interpretation as the combustion reaction A + B 2 A , where A represents heat particles and B inert particles. This process can be described as an interacting particle system in the following way: at time 0 a simple symmetric continuous time random walk of total jump rate one begins to move from the origin of the hypercubic lattice; then, as soon as any random walk visits a site...

Spectral condition, hitting times and Nash inequality

Eva Löcherbach, Oleg Loukianov, Dasha Loukianova (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let X be a μ -symmetric Hunt process on a LCCB space 𝙴 . For an open set 𝙶 𝙴 , let τ 𝙶 be the exit time of X from 𝙶 and A 𝙶 be the generator of the process killed when it leaves 𝙶 . Let r : [ 0 , [ [ 0 , [ and R ( t ) = 0 t r ( s ) d s . We give necessary and sufficient conditions for 𝔼 μ R ( τ 𝙶 ) l t ; in terms of the behavior near the origin of the spectral measure of - A 𝙶 . When r ( t ) = t l , l 0 , by means of this condition we derive the Nash inequality for the killed process. In the diffusion case this permits to show that the existence of moments of order l + 1 for τ 𝙶 ...

Coincidence for substitutions of Pisot type

Marcy Barge, Beverly Diamond (2002)

Bulletin de la Société Mathématique de France

Similarity:

Let ϕ be a substitution of Pisot type on the alphabet 𝒜 = { 1 , 2 , ... , d } ; ϕ satisfies theif for every i , j 𝒜 , there are integers k , n such that ϕ n ( i ) and ϕ n ( j ) have the same k -th letter, and the prefixes of length k - 1 of ϕ n ( i ) and ϕ n ( j ) have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if d = 2 and provide a partial result for d 2 .

Uniform mixing time for random walk on lamplighter graphs

Júlia Komjáthy, Jason Miller, Yuval Peres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Suppose that 𝒢 is a finite, connected graph and X is a lazy random walk on 𝒢 . The lamplighter chain X associated with X is the random walk on the wreath product 𝒢 = 𝐙 2 𝒢 , the graph whose vertices consist of pairs ( f ̲ , x ) where f is a labeling of the vertices of 𝒢 by elements of 𝐙 2 = { 0 , 1 } and x is a vertex in 𝒢 . There is an edge between ( f ̲ , x ) and ( g ̲ , y ) in 𝒢 if and only if x is adjacent to y in 𝒢 and f z = g z for all z x , y . In each step, X moves from a configuration ( f ̲ , x ) by updating x to y using the transition rule of X and then...

The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent

D. Erhard, F. den Hollander, G. Maillard (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper we study the parabolic Anderson equation u ( x , t ) / t = κ 𝛥 u ( x , t ) + ξ ( x , t ) u ( x , t ) , x d , t 0 , where the u -field and the ξ -field are -valued, κ [ 0 , ) is the diffusion constant, and 𝛥 is the discrete Laplacian. The ξ -field plays the role of athat drives the equation. The initial condition u ( x , 0 ) = u 0 ( x ) , x d , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2 d κ ,...

Positivity of integrated random walks

Vladislav Vysotsky (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Take a centered random walk S n and consider the sequence of its partial sums A n : = i = 1 n S i . Suppose S 1 is in the domain of normal attraction of an α -stable law with 1 l t ; α 2 . Assuming that S 1 is either right-exponential (i.e. ( S 1 g t ; x | S 1 g t ; 0 ) = e - a x for some a g t ; 0 and all x g t ; 0 ) or right-continuous (skip free), we prove that { A 1 g t ; 0 , , A N g t ; 0 } C α N 1 / ( 2 α ) - 1 / 2 as N , where C α g t ; 0 depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...