Coincidence for substitutions of Pisot type
Bulletin de la Société Mathématique de France (2002)
- Volume: 130, Issue: 4, page 619-626
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topBarge, Marcy, and Diamond, Beverly. "Coincidence for substitutions of Pisot type." Bulletin de la Société Mathématique de France 130.4 (2002): 619-626. <http://eudml.org/doc/272474>.
@article{Barge2002,
abstract = {Let $\varphi $ be a substitution of Pisot type on the alphabet $\mathcal \{A\}=\lbrace 1, 2,\ldots , d\rbrace $; $\varphi $ satisfies thestrong coincidence conditionif for every $i, j \in \mathcal \{A\}$, there are integers $k, n$ such that $\varphi ^n(i)$ and $\varphi ^n(j)$ have the same $k$-th letter, and the prefixes of length $k-1$ of $\varphi ^n(i)$ and $\varphi ^n(j)$ have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if $d= 2$ and provide a partial result for $d \ge 2$.},
author = {Barge, Marcy, Diamond, Beverly},
journal = {Bulletin de la Société Mathématique de France},
keywords = {substitution; dynamical system; Pisot; coincidence conjecture; pure discrete spectrum},
language = {eng},
number = {4},
pages = {619-626},
publisher = {Société mathématique de France},
title = {Coincidence for substitutions of Pisot type},
url = {http://eudml.org/doc/272474},
volume = {130},
year = {2002},
}
TY - JOUR
AU - Barge, Marcy
AU - Diamond, Beverly
TI - Coincidence for substitutions of Pisot type
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 619
EP - 626
AB - Let $\varphi $ be a substitution of Pisot type on the alphabet $\mathcal {A}=\lbrace 1, 2,\ldots , d\rbrace $; $\varphi $ satisfies thestrong coincidence conditionif for every $i, j \in \mathcal {A}$, there are integers $k, n$ such that $\varphi ^n(i)$ and $\varphi ^n(j)$ have the same $k$-th letter, and the prefixes of length $k-1$ of $\varphi ^n(i)$ and $\varphi ^n(j)$ have the same image under the abelianization map. We prove that the strong coincidence condition is satisfied if $d= 2$ and provide a partial result for $d \ge 2$.
LA - eng
KW - substitution; dynamical system; Pisot; coincidence conjecture; pure discrete spectrum
UR - http://eudml.org/doc/272474
ER -
References
top- [1] P. Arnoux & S. Ito – « Pisot substitutions and Rauzy fractals », Bull. Belg. Math. Soc. Simon Stevin8 (2001), p. 181–207. Zbl1007.37001MR1838930
- [2] P. Arnoux, S. Ito & Y. Sano – « Higher dimensional extensions of substitutions and their dual maps », J. Anal. Math.83 (2001), p. 183–206. Zbl0987.11013MR1828491
- [3] V. Berthé, S. Ferenczi, C. Mauduit & A. Siegel (éds.) – Introduction to Finite Automata and Substitutions Dynamical Systems, Lectures Notes in Mathematics, Springer-Verlag, to appear, http://iml. univ-mrs.fr/editions/preprint00/book/prebookdac.html. MR1970385
- [4] V. Canterini & A. Siegel – « Geometric representation of primitive substitutions of Pisot type », Trans. Amer. Math. Soc.353 (2001), p. 5121–5144. Zbl1142.37302MR1852097
- [5] F. Dekking – « The spectrum of dynamical systems arising from substitutions of constant length », Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 41 (1977/78), p. 221–239. Zbl0348.54034MR461470
- [6] M. Hollander – « Linear numeration systems, finite -expansions, and discrete spectrum of substitution dynamical systems », Thèse, University of Washington, 1996. MR2694876
- [7] M. Hollander & B. Solomyak – « Two-symbol Pisot substitutions have pure discrete spectrum », preprint to appear in Ergodic Theory and Dynamical Systems. Zbl1031.11010MR1972237
- [8] A. Livshits – « On the spectra of adic transformations of Markov compact sets », Uspekhi Mat. Nauk 42 (1987), p. 189–190, English translation: Russian Math. Surveys 42 (1987), p.222–223. Zbl0648.47004MR896889
- [9] —, « Sufficient conditions for weak mixing of substitutions and of stationary adic transformations », Mat. Zametki 44 (1988), p. 785–793, 862, English translation: Math. Notes 44 (1988), p.920-925. Zbl0668.28005MR983550
- [10] A. Siegel – « Représentation des systèmes dynamiques substitutifs non unimodulaires », preprint to appear in Ergodic Theory and Dynamical Systems. Zbl1052.37009
- [11] —, « Représentation géométrique, combinatoire et arithmétique des substitutions de type Pisot », Thèse, Université de la Méditerranée, 2000.
Citations in EuDML Documents
top- Anne Siegel, Système dynamique à spectre discret et pavage périodique associé à une substitution
- Hiromi Ei, Shunji Ito, Hui Rao, Atomic surfaces, tilings and coincidences II. Reducible case
- Jörg M. Thuswaldner, Unimodular Pisot substitutions and their associated tiles
- Pierre Arnoux, Valérie Berthé, Arnaud Hilion, Anne Siegel, Fractal representation of the attractive lamination of an automorphism of the free group
- Valérie Berthé, Hiromi Ei, Shunji Ito, Hui Rao, On substitution invariant Sturmian words: an application of Rauzy fractals
- Guy Barat, Valérie Berthé, Pierre Liardet, Jörg Thuswaldner, Dynamical directions in numeration
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.