Displaying similar documents to “Invariant jets of a smooth dynamical system”

Almost invariant submanifolds for compact group actions

Alan Weinstein (2000)

Journal of the European Mathematical Society

Similarity:

We define a C 1 distance between submanifolds of a riemannian manifold M and show that, if a compact submanifold N is not moved too much under the isometric action of a compact group G , there is a G -invariant submanifold C 1 -close to N . The proof involves a procedure of averaging nearby submanifolds of riemannian manifolds in a symmetric way. The procedure combines averaging techniques of Cartan, Grove/Karcher, and de la Harpe/Karoubi with Whitney’s idea of realizing submanifolds as zeros...

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Similarity:

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms

Shyamal K. Hui, Richard S. Lemence, Pradip Mandal (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A submanifold M m of a generalized Sasakian-space-form M ¯ 2 n + 1 ( f 1 , f 2 , f 3 ) is said to be C -totally real submanifold if ξ Γ ( T M ) and φ X Γ ( T M ) for all X Γ ( T M ) . In particular, if m = n , then M n is called Legendrian submanifold. Here, we derive Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms with respect to different connections; namely, quarter symmetric metric connection, Schouten-van Kampen connection and Tanaka-Webster connection.

On the convergence to 0 of mₙξmod 1

Bassam Fayad, Jean-Paul Thouvenot (2014)

Acta Arithmetica

Similarity:

We show that for any irrational number α and a sequence m l l of integers such that l i m l | | | m l α | | | = 0 , there exists a continuous measure μ on the circle such that l i m l | | | m l θ | | | d μ ( θ ) = 0 . This implies that any rigidity sequence of any ergodic transformation is a rigidity sequence for some weakly mixing dynamical system. On the other hand, we show that for any α ∈ ℝ - ℚ, there exists a sequence m l l of integers such that | | | m l α | | | 0 and such that m l θ [ 1 ] is dense on the circle if and only if θ ∉ ℚα + ℚ.

The gap theorems for some extremal submanifolds in a unit sphere

Xi Guo and Lan Wu (2015)

Communications in Mathematics

Similarity:

Let M be an n -dimensional submanifold in the unit sphere S n + p , we call M a k -extremal submanifold if it is a critical point of the functional M ρ 2 k d v . In this paper, we can study gap phenomenon for these submanifolds.

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Similarity:

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie. ...

f -biminimal maps between Riemannian manifolds

Yan Zhao, Ximin Liu (2019)

Czechoslovak Mathematical Journal

Similarity:

We give the definition of f -biminimal submanifolds and derive the equation for f -biminimal submanifolds. As an application, we give some examples of f -biminimal manifolds. Finally, we consider f -minimal hypersurfaces in the product space n × 𝕊 1 ( a ) and derive two rigidity theorems.

Multiparameter ergodic Cesàro-α averages

A. L. Bernardis, R. Crescimbeni, C. Ferrari Freire (2015)

Colloquium Mathematicae

Similarity:

Net (X,ℱ,ν) be a σ-finite measure space. Associated with k Lamperti operators on L p ( ν ) , T , . . . , T k , n ̅ = ( n , . . . , n k ) k and α ̅ = ( α , . . . , α k ) with 0 < α j 1 , we define the ergodic Cesàro-α̅ averages n ̅ , α ̅ f = 1 / ( j = 1 k A n j α j ) i k = 0 n k i = 0 n j = 1 k A n j - i j α j - 1 T k i k T i f . For these averages we prove the almost everywhere convergence on X and the convergence in the L p ( ν ) norm, when n , . . . , n k independently, for all f L p ( d ν ) with p > 1/α⁎ where α = m i n 1 j k α j . In the limit case p = 1/α⁎, we prove that the averages n ̅ , α ̅ f converge almost everywhere on X for all f in the Orlicz-Lorentz space Λ ( 1 / α , φ m - 1 ) with φ ( t ) = t ( 1 + l o g t ) m . To obtain the result in the limit case we need...

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Similarity:

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate ...

Moving averages

S. V. Butler, J. M. Rosenblatt (2008)

Colloquium Mathematicae

Similarity:

In ergodic theory, certain sequences of averages A k f may not converge almost everywhere for all f ∈ L¹(X), but a sufficiently rapidly growing subsequence A m k f of these averages will be well behaved for all f. The order of growth of this subsequence that is sufficient is often hyperexponential, but not necessarily so. For example, if the averages are A k f ( x ) = 1 / ( 2 k ) j = 4 k + 1 4 k + 2 k f ( T j x ) , then the subsequence A k ² f will not be pointwise good even on L , but the subsequence A 2 k f will be pointwise good on L¹. Understanding when the hyperexponential...

Distortion bounds for C 2 + η unimodal maps

Mike Todd (2007)

Fundamenta Mathematicae

Similarity:

We obtain estimates for derivative and cross-ratio distortion for C 2 + η (any η > 0) unimodal maps with non-flat critical points. We do not require any “Schwarzian-like” condition. For two intervals J ⊂ T, the cross-ratio is defined as the value B(T,J): = (|T| |J|)/(|L| |R|) where L,R are the left and right connected components of T∖J respectively. For an interval map g such that g T : T is a diffeomorphism, we consider the cross-ratio distortion to be B(g,T,J): = B(g(T),g(J))/B(T,J). We prove...

Bubbling on boundary submanifolds for the Lin–Ni–Takagi problem at higher critical exponents

Manuel del Pino, Fethi Mahmudi, Monica Musso (2014)

Journal of the European Mathematical Society

Similarity:

Let Ω be a bounded domain in n with smooth boundary Ω . We consider the equation d 2 Δ u - u + u n - k + 2 n - k - 2 = 0 in Ω , under zero Neumann boundary conditions, where Ω is open, smooth and bounded and d is a small positive parameter. We assume that there is a k -dimensional closed, embedded minimal submanifold K of Ω , which is non-degenerate, and certain weighted average of sectional curvatures of Ω is positive along K . Then we prove the existence of a sequence d = d j 0 and a positive solution u d such that d 2 | u d | 2 S δ K as d 0 in the sense of measures,...

The absolute continuity of the invariant measure of random iterated function systems with overlaps

Balázs Bárány, Tomas Persson (2010)

Fundamenta Mathematicae

Similarity:

We consider iterated function systems on the interval with random perturbation. Let Y ε be uniformly distributed in [1-ε,1+ ε] and let f i C 1 + α be contractions with fixpoints a i . We consider the iterated function system Y ε f i + a i ( 1 - Y ε ) i = 1 , where each of the maps is chosen with probability p i . It is shown that the invariant density is in L² and its L² norm does not grow faster than 1/√ε as ε vanishes. The proof relies on defining a piecewise hyperbolic dynamical system on the cube with an SRB-measure whose projection...

Geometric rigidity of × m invariant measures

Michael Hochman (2012)

Journal of the European Mathematical Society

Similarity:

Let μ be a probability measure on [ 0 , 1 ] which is invariant and ergodic for T a ( x ) = a x 𝚖𝚘𝚍 1 , and 0 < 𝚍𝚒𝚖 μ < 1 . Let f be a local diffeomorphism on some open set. We show that if E and ( f μ ) E μ E , then f ' ( x ) ± a r : r at μ -a.e. point x f - 1 E . In particular, if g is a piecewise-analytic map preserving μ then there is an open g -invariant set U containing supp μ such that g U is piecewise-linear with slopes which are rational powers of a . In a similar vein, for μ as above, if b is another integer and a , b are not powers of a common integer, and if ν is...

Real deformations and invariants of map-germs

J. H. Rieger, M. A. S. Ruas, R. Wik Atique (2008)

Banach Center Publications

Similarity:

A stable deformation f t of a real map-germ f : , 0 p , 0 is said to be an M-deformation if all isolated stable (local and multi-local) singularities of its complexification f t are real. A related notion is that of a good real perturbation f t of f (studied e.g. by Mond and his coworkers) for which the homology of the image (for n < p) or discriminant (for n ≥ p) of f t coincides with that of f C t . The class of map germs having an M-deformation is, in some sense, much larger than the one having a good...

Local density of diffeomorphisms with large centralizers

Christian Bonatti, Sylvain Crovisier, Gioia M. Vago, Amie Wilkinson (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Given any compact manifold M , we construct a non-empty open subset 𝒪 of the space Diff 1 ( M ) of C 1 -diffeomorphisms and a dense subset 𝒟 𝒪 such that the centralizer of every diffeomorphism in 𝒟 is uncountable, hence non-trivial.

Equidistribution towards the Green current

Vincent Guedj (2003)

Bulletin de la Société Mathématique de France

Similarity:

Let f : k k be a dominating rational mapping of first algebraic degree λ 2 . If S is a positive closed current of bidegree ( 1 , 1 ) on k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks λ - n ( f n ) * S converge to the Green current T f . For some families of mappings, we get finer convergence results which allow us to characterize all f * -invariant currents.