Displaying similar documents to “Error estimates for the Coupled Cluster method”

Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics

Othmar Koch, Christof Neuhauser, Mechthild Thalhammer (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order applied to the multi-configuration...

Stabilized Galerkin methods for magnetic advection

Holger Heumann, Ralf Hiptmair (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Taking the cue from stabilized Galerkin methods for scalar advection problems, we adapt the technique to boundary value problems modeling the advection of magnetic fields. We provide rigorous error estimates for both fully discontinuous piecewise polynomial trial functions and -conforming finite elements.

Dispersion Phenomena in Dunkl-Schrödinger Equation and Applications

Mejjaoli, H. (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 35Q55,42B10. In this paper, we study the Schrödinger equation associated with the Dunkl operators, we study the dispersive phenomena and we prove the Strichartz estimates for this equation. Some applications are discussed.