The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the best observation of wave and Schrödinger equations in quantum ergodic billiards”

Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2016)

Journal of the European Mathematical Society

Similarity:

We consider the wave and Schrödinger equations on a bounded open connected subset Ω of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset ω of Ω during a time interval [ 0 , T ] with T > 0 . It is well known that, if the pair ( ω , T ) satisfies the Geometric Control Condition ( ω being an open set), then an observability inequality holds guaranteeing that the total energy of solutions...

On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy with self-interaction

Xuwen Chen, Justin Holmer (2016)

Journal of the European Mathematical Society

Similarity:

We consider the 3D quantum BBGKY hierarchy which corresponds to the N -particle Schrödinger equation. We assume the pair interaction is N 3 β 1 V ( B β ) . For the interaction parameter β ( 0 , 2 / 3 ) , we prove that, provided an energy bound holds for solutions to the BBKGY hierarchy, the N limit points satisfy the space-time bound conjectured by S. Klainerman and M. Machedon [45] in 2008. The energy bound was proven to hold for β ( 0 , 3 / 5 ) in [28]. This allows, in the case β ( 0 , 3 / 5 ) , for the application of the Klainerman–Machedon...

C * -basic construction between non-balanced quantum doubles

Qiaoling Xin, Tianqing Cao (2024)

Czechoslovak Mathematical Journal

Similarity:

For finite groups X , G and the right G -action on X by group automorphisms, the non-balanced quantum double D ( X ; G ) is defined as the crossed product ( X op ) * G . We firstly prove that D ( X ; G ) is a finite-dimensional Hopf C * -algebra. For any subgroup H of G , D ( X ; H ) can be defined as a Hopf C * -subalgebra of D ( X ; G ) in the natural way. Then there is a conditonal expectation from D ( X ; G ) onto D ( X ; H ) and the index is [ G ; H ] . Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the...

The equation - Δ 𝑢 - λ 𝑢 | 𝑥 | 2 = | 𝑢 | 𝑝 + 𝑐 𝑓 ( 𝑥 ) : The optimal power

Boumediene Abdellaoui, Ireneo Peral (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We will consider the following problem - Δ u - λ u | x | 2 = | u | p + c f , u > 0 in Ω , where Ω N is a domain such that 0 Ω , N 3 , c > 0 and λ > 0 . The main objective of this note is to study the precise threshold p + = p + ( λ ) for which there is novery weak supersolutionif p p + ( λ ) . The optimality of p + ( λ ) is also proved by showing the solvability of the Dirichlet problem when 1 p < p + ( λ ) , for c > 0 small enough and f 0 under some hypotheses that we will prescribe.

Transference of weak type bounds of multiparameter ergodic and geometric maximal operators

Paul Hagelstein, Alexander Stokolos (2012)

Fundamenta Mathematicae

Similarity:

Let U , . . . , U d be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n × × n d with ( n , . . . , n d ) Γ . The associated multiparameter geometric and ergodic maximal operators M and M Γ are defined respectively on L ¹ ( d ) and L¹(Ω) by M g ( x ) = s u p x R 1 / | R | R | g ( y ) | d y and M Γ f ( ω ) = s u p ( n , . . . , n d ) Γ 1 / n n d j = 0 n - 1 j d = 0 n d - 1 | f ( U j U d j d ω ) | . Given a Young function Φ, it is shown that M satisfies the weak type estimate ...

The basic construction from the conditional expectation on the quantum double of a finite group

Qiaoling Xin, Lining Jiang, Zhenhua Ma (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and H a subgroup. Denote by D ( G ; H ) (or D ( G ) ) the crossed product of C ( G ) and H (or G ) with respect to the adjoint action of the latter on the former. Consider the algebra D ( G ) , e generated by D ( G ) and e , where we regard E as an idempotent operator e on D ( G ) for a certain conditional expectation E of D ( G ) onto D ( G ; H ) . Let us call D ( G ) , e the basic construction from the conditional expectation E : D ( G ) D ( G ; H ) . The paper constructs a crossed product algebra C ( G / H × G ) G , and proves that there is an algebra isomorphism between...

Modeling of the resonance of an acoustic wave in a torus

Jérôme Adou, Adama Coulibaly, Narcisse Dakouri (2013)

Annales mathématiques Blaise Pascal

Similarity:

A pneumatic tyre in rotating motion with a constant angular velocity Ω is assimilated to a torus whose generating circle has a radius R . The contact of the tyre with the ground is schematized as an ellipse with semi-major axis a . When ( Ω R / C 0 ) 1 and ( a / R ) 1 (where C 0 is the velocity of the sound), we show that at the rapid time scale R / C 0 , the air motion within a torus periodically excited on its surface generates an acoustic wave h . A study of this acoustic wave is conducted and shows that the mode associated...

Nonlinear Hyperbolic Smoothing at a Focal Point

Jean-Luc Joly, Guy Métivier, Jeffrey Rauch (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

The nonlinear dissipative wave equation u t t - Δ u + | u t | h - 1 u t = 0 in dimension d > 1 has strong solutions with the following structure. In 0 t < 1 the solutions have a focusing wave of singularity on the incoming light cone | x | = 1 - t . In { t 1 } that is after the focusing time, they are smoother than they were in { 0 t < 1 } . The examples are radial and piecewise smooth in { 0 t < 1 }

Dimers and cluster integrable systems

Alexander B. Goncharov, Richard Kenyon (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We show that the dimer model on a bipartite graph Γ on a torus gives rise to a quantum integrable system of special type, which we call a. The phase space of the classical system contains, as an open dense subset, the moduli space Ł Γ of line bundles with connections on the graph Γ . The sum of Hamiltonians is essentially the partition function of the dimer model. We say that two such graphs Γ 1 and Γ 2 areif the Newton polygons of the corresponding partition functions coincide up to translation....

Quantum expanders and geometry of operator spaces

Gilles Pisier (2014)

Journal of the European Mathematical Society

Similarity:

We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the “growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of M N -spaces needed to represent (up to a constant C > 1 ) the M N -version of the n -dimensional operator Hilbert space O H n as a direct sum of copies of M N . We show that, when C is close to 1, this multiplicity grows...

Effective Hamiltonians and Quantum States

Lawrence C. Evans (2000-2001)

Séminaire Équations aux dérivées partielles

Similarity:

We recount here some preliminary attempts to devise quantum analogues of certain aspects of Mather’s theory of minimizing measures [M1-2, M-F], augmented by the PDE theory from Fathi [F1,2] and from [E-G1]. This earlier work provides us with a Lipschitz continuous function u solving the eikonal equation aėȧnd a probability measure σ solving a related transport equation. We present some elementary formal identities relating certain quantum states ψ and u , σ . We show also how...

Finite-energy sign-changing solutions with dihedral symmetry for the stationary nonlinear Schrödinger equation

Monica Musso, Frank Pacard, Juncheng Wei (2012)

Journal of the European Mathematical Society

Similarity:

We address the problem of the existence of finite energy solitary waves for nonlinear Klein-Gordon or Schrödinger type equations Δ u - u + f ( u ) = 0 in N , u H 1 ( N ) , where N 2 . Under natural conditions on the nonlinearity f , we prove the existence of 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦𝑚𝑎𝑛𝑦𝑛𝑜𝑛𝑟𝑎𝑑𝑖𝑎𝑙𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 in any dimension N 2 . Our result complements earlier works of Bartsch and Willem ( N = 4 𝚘𝚛 N 6 ) and Lorca-Ubilla ( N = 5 ) where solutions invariant under the action of O ( 2 ) × O ( N - 2 ) are constructed. In contrast, the solutions we construct are invariant under the action of D k × O ( N - 2 ) where D k O ( 2 ) denotes the dihedral...