Displaying similar documents to “Points algébriques de hauteur bornée sur la droite projective”

Hauteur des correspondances de Hecke

Pascal Autissier (2003)

Bulletin de la Société Mathématique de France

Similarity:

L’objectif de cet article est de mesurer la complexité arithmétique de la courbe modulaire X 0 ( N ) en fonction du niveau N . Pour ce faire, on utilise un morphisme fini (de degré 1 sur son image) de X 0 ( N ) vers une variété fixe X ( 1 ) × X ( 1 ) et on calcule la hauteur au sens d’Arakelov de l’image T N de ce morphisme. La hauteur employée est directement reliée à la hauteur de Faltings des courbes elliptiques. On a besoin pour cela de considérer une théorie d’Arakelov pour les faisceaux inversibles hermitiens L 1 2 -singuliers...

De beaux groupes

Thomas Blossier, Amador Martin-Pizarro (2014)

Confluentes Mathematici

Similarity:

Dans une belle paire ( M , E ) de modèles d’une théorie stable T ayant élimination des imaginaires sans la propriété de recouvrement fini, tout groupe définissable se projette, à isogénie près, sur les points E -rationnels d’un groupe définissable dans le réduit à paramètres dans E . Le noyau de cette projection est un groupe définissable dans le réduit. Un groupe interprétable dans une paire ( K , F ) de corps algébriquement clos où K est une extension propre de F est, à isogénie près, l’extension...

Prolongements analytiques d’une classe de fonctions zêta des hauteurs et applications

D. Essouabri (2005)

Bulletin de la Société Mathématique de France

Similarity:

Nous montrons dans la première partie l’existence d’un prolongement méromorphe à et explicitons les propriétés et quelques conséquences, d’une large classe de séries zêta des hauteurs associées à l’espace projectif n ( ) ( n 1 ) . Nous montrons dans la deuxième partie que, dans le cas du plan projectif éclaté en un point sur , les fonctions zêta de hauteur associées aux fibrés en droite dont les classes sont à l’intérieur du cône des diviseurs effectifs possèdent...

La filtration canonique des points de torsion des groupes p -divisibles

Laurent Fargues (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Étant donnés un entier n 1 et un groupe de Barsotti-Tate tronqué d’échelon  n et de dimension d sur un anneau de valuation d’inégales caractéristiques, nous donnons une borne explicite sur son invariant de Hasse qui implique que sa filtration de Harder-Narasimhan possède un sous-groupe libre de rang d . Lorsque n = 1 nous redémontrons également le théorème d’Abbes-Mokrane ([120]) et de Tian ([164]) par des méthodes locales. On applique cela aux familles p -adiques de tels objets et en particulier...

Crible asymptotique et sommes de Kloosterman

Jimena Sivak-Fischler (2009)

Bulletin de la Société Mathématique de France

Similarity:

On montre à l’aide de méthodes de crible, de méthodes issues de la théorie des formes automorphes et de géométrie algébrique ainsi qu’à l’aide de la loi de Sato-Tate verticale que le signe des sommes de Kloosterman Kl ( 1 , 1 ; n ) change une infinité de fois pour n parcourant les entiers sans facteur carré ayant au plus 18 facteurs premiers. Ceci améliore un résultat précédent de Fouvry et Michel qui avaient obtenu 23 à la place de 18 .

Résultats sur la conjecture de dualité étrange sur le plan projectif

Gentiana Danila (2002)

Bulletin de la Société Mathématique de France

Similarity:

La conjecture de « dualité étrange » de Le Potier donne un isomorphisme entre l’espace des sections du fibré déterminant sur deux espaces de modules différents de faisceaux semi-stables sur le plan projectif 2 . On considère deux classes orthogonales c , u dans l’algèbre de Grothendieck K ( 2 ) telles que c est de rang strictement positif et u est de rang zéro, et on note M c et M u les espaces de modules de faisceaux semi-stables de classe c , respectivement u sur 2 . Il existe sur M c (resp. M u ) un fibré...