Displaying similar documents to “On the double Lusin condition and convergence theorem for Kurzweil-Henstock type integrals”

The topology of the space of ℋ𝒦 integrable functions in n

Varayu Boonpogkrong (2025)

Czechoslovak Mathematical Journal

Similarity:

It is known that there is no natural Banach norm on the space ℋ𝒦 of n -dimensional Henstock-Kurzweil integrable functions on [ a , b ] . We show that the ℋ𝒦 space is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . On each ℋ𝒦 ( X ) space, an F -norm · X is defined. A · X -convergent sequence is equivalent to a control-convergent sequence. Furthermore, an F -norm is also defined for a · X -continuous linear operator. Hence, many important results in functional analysis hold for the ℋ𝒦 ( X ) space. It is well-known that every...

A condition equivalent to uniform ergodicity

Maria Elena Becker (2005)

Studia Mathematica

Similarity:

Let T be a linear operator on a Banach space X with s u p | | T / n w | | < for some 0 ≤ w < 1. We show that the following conditions are equivalent: (i) n - 1 k = 0 n - 1 T k converges uniformly; (ii) c l ( I - T ) X = z X : l i m n k = 1 n T k z / k e x i s t s .

Compact operators and integral equations in the ℋ𝒦 space

Varayu Boonpogkrong (2022)

Czechoslovak Mathematical Journal

Similarity:

The space ℋ𝒦 of Henstock-Kurzweil integrable functions on [ a , b ] is the uncountable union of Fréchet spaces ℋ𝒦 ( X ) . In this paper, on each Fréchet space ℋ𝒦 ( X ) , an F -norm is defined for a continuous linear operator. Hence, many important results in functional analysis, like the Banach-Steinhaus theorem, the open mapping theorem and the closed graph theorem, hold for the ℋ𝒦 ( X ) space. It is known that every control-convergent sequence in the ℋ𝒦 space always belongs to a ℋ𝒦 ( X ) space for some X . We illustrate how...

Selectors of discrete coarse spaces

Igor Protasov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

On coincidence of Pettis and McShane integrability

Marián J. Fabián (2015)

Czechoslovak Mathematical Journal

Similarity:

R. Deville and J. Rodríguez proved that, for every Hilbert generated space X , every Pettis integrable function f : [ 0 , 1 ] X is McShane integrable. R. Avilés, G. Plebanek, and J. Rodríguez constructed a weakly compactly generated Banach space X and a scalarly null (hence Pettis integrable) function from [ 0 , 1 ] into X , which was not McShane integrable. We study here the mechanism behind the McShane integrability of scalarly negligible functions from [ 0 , 1 ] (mostly) into C ( K ) spaces. We focus in more detail on...

Some theorems of Korovkin type

Tomoko Hachiro, Takateru Okayasu (2003)

Studia Mathematica

Similarity:

We take another approach to the well known theorem of Korovkin, in the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of the Banach space C(X) (respectively, C ( X ) ) of all complex-valued (resp., real-valued) continuous functions on X, S ⊂ M a complex (resp., real) function space on X, ϕₙ a sequence of unital linear contractions from M into C(Y) (resp., C ( Y ) ), and ϕ a linear isometry from M into C(Y) (resp., C ( Y ) ). We show, under the assumption that Π N Π T , where Π N is...

Uniform mixing time for random walk on lamplighter graphs

Júlia Komjáthy, Jason Miller, Yuval Peres (2014)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Suppose that 𝒢 is a finite, connected graph and X is a lazy random walk on 𝒢 . The lamplighter chain X associated with X is the random walk on the wreath product 𝒢 = 𝐙 2 𝒢 , the graph whose vertices consist of pairs ( f ̲ , x ) where f is a labeling of the vertices of 𝒢 by elements of 𝐙 2 = { 0 , 1 } and x is a vertex in 𝒢 . There is an edge between ( f ̲ , x ) and ( g ̲ , y ) in 𝒢 if and only if x is adjacent to y in 𝒢 and f z = g z for all z x , y . In each step, X moves from a configuration ( f ̲ , x ) by updating x to y using the transition rule of X and then...