The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Witten's Conjecture for many four-manifolds of simple type”

Exotic Deformations of Calabi-Yau Manifolds

Paolo de Bartolomeis, Adriano Tomassini (2013)

Annales de l’institut Fourier

Similarity:

We introduce Quantum Inner State manifolds (QIS manifolds) as (compact) 2 n -dimensional symplectic manifolds ( M , κ ) endowed with a κ -tamed almost complex structure J and with a nowhere vanishing and normalized section ϵ of the bundle Λ J n , 0 ( M ) satisfying the condition ¯ J ϵ = 0 . We study the moduli space 𝔐 of QIS deformations of a given Calabi-Yau manifold, computing its tangent space...

Z k -actions with a special fixed point set

Pedro L. Q. Pergher, Rogério de Oliveira (2005)

Fundamenta Mathematicae

Similarity:

Let Fⁿ be a connected, smooth and closed n-dimensional manifold satisfying the following property: if N m is any smooth and closed m-dimensional manifold with m > n and T : N m N m is a smooth involution whose fixed point set is Fⁿ, then m = 2n. We describe the equivariant cobordism classification of smooth actions ( M m ; Φ ) of the group G = Z k on closed smooth m-dimensional manifolds M m for which the fixed point set of the action is a submanifold Fⁿ with the above property. This generalizes a result of F....

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

How to define "convex functions" on differentiable manifolds

Stefan Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In the paper a class of families (M) of functions defined on differentiable manifolds M with the following properties: 1 . if M is a linear manifold, then (M) contains convex functions, 2 . (·) is invariant under diffeomorphisms, 3 . each f ∈ (M) is differentiable on a dense G δ -set, is investigated.

Invariants for the modular cyclic group of prime order via classical invariant theory

David L. Wehlau (2013)

Journal of the European Mathematical Society

Similarity:

Let 𝔽 be any field of characteristic p . It is well-known that there are exactly p inequivalent indecomposable representations V 1 , V 2 , ... , V p of C p defined over 𝔽 . Thus if V is any finite dimensional C p -representation there are non-negative integers 0 n 1 , n 2 , ... , n k p - 1 such that V i = 1 k V n i + 1 . It is also well-known there is a unique (up to equivalence) d + 1 dimensional irreducible complex representation of S L 2 ( ) given by its action on the space R d of d forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation...

Commuting involutions whose fixed point set consists of two special components

Pedro L. Q. Pergher, Rogério de Oliveira (2008)

Fundamenta Mathematicae

Similarity:

Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property when it has the following property: if N m is any smooth closed m-dimensional manifold with m > n and T : N m N m is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces R P 2 n , C P 2 n and H P 2 n , and the connected sum of R P 2 n and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere...

On the classification of 3 -dimensional F -manifold algebras

Zhiqi Chen, Jifu Li, Ming Ding (2022)

Czechoslovak Mathematical Journal

Similarity:

F -manifold algebras are focused on the algebraic properties of the tangent sheaf of F -manifolds. The local classification of 3-dimensional F -manifolds has been given in A. Basalaev, C. Hertling (2021). We study the classification of 3-dimensional F -manifold algebras over the complex field .

Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds

Laurent Meersseman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Consider the following uniformization problem. Take two holomorphic (parametrized by some analytic set defined on a neighborhood of 0 in p , for some p > 0 ) or differentiable (parametrized by an open neighborhood of 0 in p , for some p > 0 ) deformation families of compact complex manifolds. Assume they are pointwise isomorphic, that is for each point t of the parameter space, the fiber over t of the first family is biholomorphic to the fiber over t of the second family. Then, under which conditions...

On the bounding, splitting, and distributivity numbers

Alan S. Dow, Saharon Shelah (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The cardinal invariants 𝔥 , 𝔟 , 𝔰 of 𝒫 ( ω ) are known to satisfy that ω 1 𝔥 min { 𝔟 , 𝔰 } . We prove that all inequalities can be strict. We also introduce a new upper bound for 𝔥 and show that it can be less than 𝔰 . The key method is to utilize finite support matrix iterations of ccc posets following paper Ultrafilters with small generating sets by A. Blass and S. Shelah (1989).

Complex structures on product of circle bundles over complex manifolds

Parameswaran Sankaran, Ajay Singh Thakur (2013)

Annales de l’institut Fourier

Similarity:

Let L ¯ i X i be a holomorphic line bundle over a compact complex manifold for i = 1 , 2 . Let S i denote the associated principal circle-bundle with respect to some hermitian inner product on L ¯ i . We construct complex structures on S = S 1 × S 2 which we refer to as scalar, diagonal, and linear types. While scalar type structures always exist, the more general diagonal but non-scalar type structures are constructed assuming that L ¯ i are equivariant ( * ) n i -bundles satisfying some additional conditions....

Holonomy groups of flat manifolds with the R property

Rafał Lutowski, Andrzej Szczepański (2013)

Fundamenta Mathematicae

Similarity:

Let M be a flat manifold. We say that M has the R property if the Reidemeister number R(f) is infinite for every homeomorphism f: M → M. We investigate relations between the holonomy representation ρ of M and the R property. When the holonomy group of M is solvable we show that if ρ has a unique ℝ-irreducible subrepresentation of odd degree then M has the R property. This result is related to Conjecture 4.8 in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].

Finiteness problems on Nash manifolds and Nash sets

José F. Fernando, José Manuel Gamboa, Jesús M. Ruiz (2014)

Journal of the European Mathematical Society

Similarity:

We study here several finiteness problems concerning affine Nash manifolds M and Nash subsets X . Three main results are: (i) A Nash function on a semialgebraic subset Z of M has a Nash extension to an open semialgebraic neighborhood of Z in M , (ii) A Nash set X that has only normal crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash diffeomorphisms ( u 1 , , u m ) : U m such that U X = { u 1 u r = 0 } , (iii) Every affine Nash manifold with corners N is a closed subset of an affine Nash...

The natural operators T | f T * T r * and T | f Λ ² T * T r *

W. M. Mikulski (2002)

Colloquium Mathematicae

Similarity:

Let r and n be natural numbers. For n ≥ 2 all natural operators T | f T * T r * transforming vector fields on n-manifolds M to 1-forms on T r * M = J r ( M , ) are classified. For n ≥ 3 all natural operators T | f Λ ² T * T r * transforming vector fields on n-manifolds M to 2-forms on T r * M are completely described.

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

Similarity:

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold...

Combinatorics of dense subsets of the rationals

B. Balcar, F. Hernández-Hernández, M. Hrušák (2004)

Fundamenta Mathematicae

Similarity:

We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ . W e c o m p a r e t h e m w i t h t h e i r a n a l o g u e s i n t h e w e l l s t u d i e d B o o l e a n a l g e b r a ( ω ) / f i n . W e s h o w t h a t ℚ = p , ℚ = t a n d ℚ = i , w h e r e a s ℚ > h a n d ℚ > r a r e b o t h s h o w n t o b e r e l a t i v e l y c o n s i s t e n t w i t h Z F C . W e a l s o i n v e s t i g a t e c o m b i n a t o r i c s o f t h e i d e a l n w d o f n o w h e r e d e n s e s u b s e t s o f , . I n p a r t i c u l a r , w e s h o w t h a t non(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅). We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

Cocycle invariants of codimension 2 embeddings of manifolds

Józef H. Przytycki, Witold Rosicki (2014)

Banach Center Publications

Similarity:

We consider the classical problem of a position of n-dimensional manifold Mⁿ in n + 2 . We show that we can define the fundamental (n+1)-cycle and the shadow fundamental (n+2)-cycle for a fundamental quandle of a knotting M n + 2 . In particular, we show that for any fixed quandle, quandle coloring, and shadow quandle coloring, of a diagram of Mⁿ embedded in n + 2 we have (n+1)- and (n+2)-(co)cycle invariants (i.e. invariant under Roseman moves).

On the Picard number of divisors in Fano manifolds

Cinzia Casagrande (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in  X . We consider the image 𝒩 1 ( D , X ) of  𝒩 1 ( D ) in  𝒩 1 ( X ) under the natural push-forward of 1 -cycles. We show that ρ X - ρ D codim 𝒩 1 ( D , X ) 8 . Moreover if codim 𝒩 1 ( D , X ) 3 , then either X S × T where S is a Del Pezzo surface, or codim 𝒩 1 ( D , X ) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X - ρ T = 4 .

Canonical contact forms on spherical CR manifolds

Wei Wang (2003)

Journal of the European Mathematical Society

Similarity:

We construct the CR invariant canonical contact form can ( J ) on scalar positive spherical CR manifold ( M , J ) , which is the CR analogue of canonical metric on locally conformally flat manifold constructed by Habermann and Jost. We also construct another canonical contact form on the Kleinian manifold Ω ( Γ ) / Γ , where Γ is a convex cocompact subgroup of Aut C R S 2 n + 1 = P U ( n + 1 , 1 ) and Ω ( Γ ) is the discontinuity domain of Γ . This contact form can be used to prove that Ω ( Γ ) / Γ is scalar positive (respectively, scalar negative, or scalar vanishing)...

Linking and the Morse complex

Michael Usher (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

For a Morse function f on a compact oriented manifold M , we show that f has more critical points than the number required by the Morse inequalities if and only if there exists a certain class of link in M whose components have nontrivial linking number, such that the minimal value of f on one of the components is larger than its maximal value on the other. Indeed we characterize the precise number of critical points of f in terms of the Betti numbers of M and the behavior of f with respect...

On lifting of connections to Weil bundles

Jan Kurek, Włodzimierz M. Mikulski (2012)

Annales Polonici Mathematici

Similarity:

We prove that the problem of finding all f m -natural operators B : Q Q T A lifting classical linear connections ∇ on m-manifolds M to classical linear connections B M ( ) on the Weil bundle T A M corresponding to a p-dimensional (over ℝ) Weil algebra A is equivalent to the one of finding all f m -natural operators C : Q ( T ¹ p - 1 , T * T * T ) transforming classical linear connections ∇ on m-manifolds M into base-preserving fibred maps C M ( ) : T ¹ p - 1 M = M p - 1 T M T * M T * M T M .

On prolongations of projectable connections

Jan Kurek, Włodzimierz M. Mikulski (2011)

Annales Polonici Mathematici

Similarity:

We extend the concept of r-order connections on fibred manifolds to the one of (r,s,q)-order projectable connections on fibred-fibred manifolds, where r,s,q are arbitrary non-negative integers with s ≥ r ≤ q. Similarly to the fibred manifold case, given a bundle functor F of order r on (m₁,m₂,n₁,n₂)-dimensional fibred-fibred manifolds Y → M, we construct a general connection ℱ(Γ,Λ):FY → J¹FY on FY → M from a projectable general (i.e. (1,1,1)-order) connection Γ : Y J 1 , 1 , 1 Y on Y → M by means of an...