The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Weak solutions to the Navier-Stokes equations in a Y-shaped domain”

Time-dependent coupling of Navier–Stokes and Darcy flows

Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

Similarity:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...

Remark on regularity of weak solutions to the Navier-Stokes equations

Zdeněk Skalák, Petr Kučera (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Some results on regularity of weak solutions to the Navier-Stokes equations published recently in [3] follow easily from a classical theorem on compact operators. Further, weak solutions of the Navier-Stokes equations in the space L 2 ( 0 , T , W 1 , 3 ( 𝛺 ) 3 ) are regular.