Displaying similar documents to “Global existence for nonlinear system of wave equations in 3-D domains”

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Weak solutions to the initial boundary value problem for a semilinear wave equation with damping and source terms

Petronela Radu (2008)

Applicationes Mathematicae

Similarity:

We show local existence of solutions to the initial boundary value problem corresponding to a semilinear wave equation with interior damping and source terms. The difficulty in dealing with these two competitive forces comes from the fact that the source term is not a locally Lipschitz function from H¹(Ω) into L²(Ω) as typically assumed in the literature. The strategy behind the proof is based on the physics of the problem, so it does not use the damping present in the equation. The...

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.

Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping

Lorena Bociu, Irena Lasiecka (2008)

Applicationes Mathematicae

Similarity:

We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.