Displaying similar documents to “Blow-up for the energy-critical nonlinear wave equation and Schrödinger equation with inverse-square potential”

Semiclassical states of nonlinear Schrödinger equations with bounded potentials

Antonio Ambrosetti, Marino Badiale, Silvia Cingolani (1996)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Using some perturbation results in critical point theory, we prove that a class of nonlinear Schrödinger equations possesses semiclassical states that concentrate near the critical points of the potential V .

Blow up and near soliton dynamics for the L 2 critical gKdV equation

Yvan Martel, Frank Merle, Pierre Raphaël (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

These notes present the main results of [, , ] concerning the mass critical (gKdV) equation u t + ( u x x + u 5 ) x = 0 for initial data in H 1 close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in H 1 , construction of various exotic blow up rates in H 1 , including grow up in infinite time. ...

Two blow-up regimes for L 2 supercritical nonlinear Schrödinger equations

Frank Merle, Pierre Raphaël, Jérémie Szeftel (2009-2010)

Séminaire Équations aux dérivées partielles

Similarity:

We consider the focusing nonlinear Schrödinger equations i t u + Δ u + u | u | p - 1 = 0 . We prove the existence of two finite time blow up dynamics in the supercritical case and provide for each a qualitative description of the singularity formation near the blow up time.

Stationary solutions of semilinear Schrödinger equations with trapping potentials in supercritical dimensions

Filip Ficek (2023)

Archivum Mathematicum

Similarity:

Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials. ...

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain. ...