The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Diffeomorphisms conformal on distributions”

On the conformal gauge of a compact metric space

Matias Carrasco Piaggio (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

Separation properties for self-conformal sets

Yuan-Ling Ye (2002)

Studia Mathematica

Similarity:

For a one-to-one self-conformal contractive system w j j = 1 m on d with attractor K and conformality dimension α, Peres et al. showed that the open set condition and strong open set condition are both equivalent to 0 < α ( K ) < . We give a simple proof of this result as well as discuss some further properties related to the separation condition.

Lower quantization coefficient and the F-conformal measure

Mrinal Kanti Roychowdhury (2011)

Colloquium Mathematicae

Similarity:

Let F = f ( i ) : 1 i N be a family of Hölder continuous functions and let φ i : 1 i N be a conformal iterated function system. Lindsay and Mauldin’s paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.

Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations

Alexandru Kristály, Vicenţiu Rădulescu (2009)

Studia Mathematica

Similarity:

Let (M,g) be a compact Riemannian manifold without boundary, with dim M ≥ 3, and f: ℝ → ℝ a continuous function which is sublinear at infinity. By various variational approaches, existence of multiple solutions of the eigenvalue problem - Δ g ω + α ( σ ) ω = K ̃ ( λ , σ ) f ( ω ) , σ ∈ M, ω ∈ H₁²(M), is established for certain eigenvalues λ > 0, depending on further properties of f and on explicit forms of the function K̃. Here, Δ g stands for the Laplace-Beltrami operator on (M,g), and α, K̃ are smooth positive functions. These...

Levi's forms of higher codimensional submanifolds

Andrea D&amp;#039;Agnolo, Giuseppe Zampieri (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let X C n , let M be a C 2 hypersurface of X , S be a C 2 submanifold of M . Denote by L M the Levi form of M at z 0 S . In a previous paper [3] two numbers s ± S , p , p T ˙ S * X z 0 are defined; for S = M they are the numbers of positive and negative eigenvalues for L M . For S M , p S × M T ˙ * S X ) , we show here that s ± S , p are still the numbers of positive and negative eigenvalues for L M when restricted to T z 0 C S . Applications to the concentration in degree for microfunctions at the boundary are given.

Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability...

Conformal measures and matings between Kleinian groups and quadratic polynomials

Marianne Freiberger (2007)

Fundamenta Mathematicae

Similarity:

Following results of McMullen concerning rational maps, we show that the limit set of matings between a certain class of representations of C₂ ∗ C₃ and quadratic polynomials carries δ-conformal measures, and that if the correspondence is geometrically finite then the real number δ is equal to the Hausdorff dimension of the limit set. Moreover, when f is the limit of a pinching deformation f t 0 t < 1 we give sufficient conditions for the dynamical convergence of f t .

Module-valued functors preserving the covering dimension

Jan Spěvák (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove a general theorem about preservation of the covering dimension dim by certain covariant functors that implies, among others, the following concrete results. If G G is a pathwise connected...

A strong maximum principle for the Paneitz operator and a non-local flow for the Q -curvature

Matthew J. Gursky, Andrea Malchiodi (2015)

Journal of the European Mathematical Society

Similarity:

In this paper we consider Riemannian manifolds ( M n , g ) of dimension n 5 , with semi-positive Q -curvature and non-negative scalar curvature. Under these assumptions we prove (i) the Paneitz operator satisfies a strong maximum principle; (ii) the Paneitz operator is a positive operator; and (iii) its Green’s function is strictly positive. We then introduce a non-local flow whose stationary points are metrics of constant positive Q -curvature. Modifying the test function construction of Esposito-Robert,...

Maps with dimensionally restricted fibers

Vesko Valov (2011)

Colloquium Mathematicae

Similarity:

We prove that if f: X → Y is a closed surjective map between metric spaces such that every fiber f - 1 ( y ) belongs to a class S of spaces, then there exists an F σ -set A ⊂ X such that A ∈ S and d i m f - 1 ( y ) A = 0 for all y ∈ Y. Here, S can be one of the following classes: (i) M: e-dim M ≤ K for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if S = M: dim M ≤ n, then dim f ∆ g ≤ 0 for almost all g C ( X , n + 1 ) .

On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In questo lavoro si danno alcuni risultati sugli spettri degli operatori di Laplace per varietà Riemanniane compatte con curvatura scalare positiva e di dimensione 2 p . Ad essi si aggiunge una osservazione riguardante la congettura di Yamabe.

Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold

Farah H. Al-Hussaini, Aligadzhi R. Rustanov, Habeeb M. Abood (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are η -Einstein manifolds of type ( α , β ) . Furthermore, we have...

Asymptotically conformal classes and non-Strebel points

Guowu Yao (2016)

Studia Mathematica

Similarity:

Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any t ( - 1 / | | μ | | , 1 / | | μ | | ) 0 , 1 .

On dimensionally restricted maps

H. Murat Tuncali, Vesko Valov (2002)

Fundamenta Mathematicae

Similarity:

Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an F σ -subset A k of X such that d i m A k k and the restriction f | ( X A k ) is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij...

Homogeneity and non-coincidence of Hausdorff and box dimensions for subsets of ℝⁿ

Anders Nilsson, Peter Wingren (2007)

Studia Mathematica

Similarity:

A class of subsets of ℝⁿ is constructed that have certain homogeneity and non-coincidence properties with respect to Hausdorff and box dimensions. For each triple (r,s,t) of numbers in the interval (0,n] with r < s < t, a compact set K is constructed so that for any non-empty subset U relatively open in K, we have ( d i m H ( U ) , d i m ̲ B ( U ) , d i m ¯ B ( U ) ) = ( r , s , t ) . Moreover, 2 - n H r ( K ) 2 n r / 2 .

Conformal harmonic forms, Branson–Gover operators and Dirichlet problem at infinity

Erwann Aubry, Colin Guillarmou (2011)

Journal of the European Mathematical Society

Similarity:

For odd-dimensional Poincaré–Einstein manifolds ( X n + 1 , g ) , we study the set of harmonic k -forms (for k < n / 2 ) which are C m (with m ) on the conformal compactification X ¯ of X . This set is infinite-dimensional for small m but it becomes finite-dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology H k ( X ¯ , X ¯ ) and the kernel of the Branson–Gover [3] differential operators ( L k , G k ) on the conformal infinity ( X ¯ , [ h 0 ] ) . We also relate the set of C n - 2 k + 1 ( Λ k ( X ¯ ) ) forms in the kernel of d + δ g ...