Displaying similar documents to “Some properties of Reinhardt domains”

A boundary cross theorem for separately holomorphic functions

Peter Pflug, Viêt-Anh Nguyên (2004)

Annales Polonici Mathematici

Similarity:

Let D ⊂ ℂⁿ and G m be pseudoconvex domains, let A (resp. B) be an open subset of the boundary ∂D (resp. ∂G) and let X be the 2-fold cross ((D∪A)×B)∪(A×(B∪G)). Suppose in addition that the domain D (resp. G) is locally ² smooth on A (resp. B). We shall determine the “envelope of holomorphy” X̂ of X in the sense that any function continuous on X and separately holomorphic on (A×G)∪(D×B) extends to a function continuous on X̂ and holomorphic on the interior of X̂. A generalization of this...

Zeros of bounded holomorphic functions in strictly pseudoconvex domains in 2

Jim Arlebrink (1993)

Annales de l'institut Fourier

Similarity:

Let D be a bounded strictly pseudoconvex domain in 2 and let X be a positive divisor of D with finite area. We prove that there exists a bounded holomorphic function f such that X is the zero set of f . This result has previously been obtained by Berndtsson in the case where D is the unit ball in 2 .

Certain partial differential subordinations on some Reinhardt domains in n

Gabriela Kohr, Mirela Kohr (1997)

Annales Polonici Mathematici

Similarity:

We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in n . Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain B 2 p with p ≥ 1.

Proper holomorphic liftings and new formulas for the Bergman and Szegő kernels

E. H. Youssfi (2002)

Studia Mathematica

Similarity:

We consider a large class of convex circular domains in M m , n ( ) × . . . × M m d , n d ( ) which contains the oval domains and minimal balls. We compute their Bergman and Szegő kernels. Our approach relies on the analysis of some proper holomorphic liftings of our domains to some suitable manifolds.

On the Rogosinski radius for holomorphic mappings and some of its applications

Lev Aizenberg, Mark Elin, David Shoikhet (2005)

Studia Mathematica

Similarity:

The well known theorem of Rogosinski asserts that if the modulus of the sum of a power series is less than 1 in the open unit disk: | n = 0 a z | < 1 , |z| < 1, then all its partial sums are less than 1 in the disk of radius 1/2: | n = 0 k a z | < 1 , |z| < 1/2, and this radius is sharp. We present a generalization of this theorem to holomorphic mappings of the open unit ball into an arbitrary convex domain. Other multidimensional analogs of Rogosinski’s theorem as well as some applications to dynamical systems are...

Holomorphic series expansion of functions of Carleman type

Taib Belghiti (2004)

Annales Polonici Mathematici

Similarity:

Let f be a holomorphic function of Carleman type in a bounded convex domain D of the plane. We show that f can be expanded in a series f = ∑ₙfₙ, where fₙ is a holomorphic function in Dₙ satisfying s u p z D | f ( z ) | C ϱ for some constants C > 0 and 0 < ϱ < 1, and where (Dₙ)ₙ is a suitably chosen sequence of decreasing neighborhoods of the closure of D. Conversely, if f admits such an expansion then f is of Carleman type. The decrease of the sequence Dₙ characterizes the smoothness of f. ...

Extension and restriction of holomorphic functions

Klas Diederich, Emmanuel Mazzilli (1997)

Annales de l'institut Fourier

Similarity:

Strong pathologies with respect to growth properties can occur for the extension of holomorphic functions from submanifolds D ' of pseudoconvex domains D to all of D even in quite simple situations; The spaces A p ( D ' ) : = 𝒪 ( D ' ) L p ( D ' ) are, in general, not at all preserved. Also the image of the Hilbert space A 2 ( D ) under the restriction to D ' can have a very strange structure.

Boundary behaviour of holomorphic functions in Hardy-Sobolev spaces on convex domains in ℂⁿ

Marco M. Peloso, Hercule Valencourt (2010)

Colloquium Mathematicae

Similarity:

We study the boundary behaviour of holomorphic functions in the Hardy-Sobolev spaces p , k ( ) , where is a smooth, bounded convex domain of finite type in ℂⁿ, by describing the approach regions for such functions. In particular, we extend a phenomenon first discovered by Nagel-Rudin and Shapiro in the case of the unit disk, and later extended by Sueiro to the case of strongly pseudoconvex domains.

Analytic extension from non-pseudoconvex boundaries and A ( D ) -convexity

Christine Laurent-Thiébaut, Egmon Porten (2003)

Annales de l’institut Fourier

Similarity:

Let D n , n 2 , be a domain with C 2 -boundary and K D be a compact set such that D K is connected. We study univalent analytic extension of CR-functions from D K to parts of D . Call K CR-convex if its A ( D ) -convex hull, A ( D ) - hull ( K ) , satisfies K = D A ( D ) - hull ( K ) ( A ( D ) denoting the space of functions, which are holomorphic on D and continuous up to D ). The main theorem of the paper gives analytic extension to D A ( D ) - hull ( K ) , if K is CR- convex.

Peak functions on convex domains

Kolář, Martin

Similarity:

Let Ω n be a domain with smooth boundary and p Ω . A holomorphic function f on Ω is called a C k ( k = 0 , 1 , 2 , ) peak function at p if f C k ( Ω ¯ ) , f ( p ) = 1 , and | f ( q ) | < 1 for all q Ω ¯ { p } . If Ω is strongly pseudoconvex, then C peak functions exist. On the other hand, J. E. Fornaess constructed an example in 2 to show that this result fails, even for C 1 functions, on a weakly pseudoconvex domain [Math. Ann. 227, 173-175 (1977; Zbl 0346.32026)]. Subsequently, E. Bedford and J. E. Fornaess showed that there is always a continuous peak function...

A set on which the local Łojasiewicz exponent is attained

Jacek Chądzyński, Tadeusz Krasiński (1997)

Annales Polonici Mathematici

Similarity:

Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping F = ( f , . . . , f ) : U m , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.