Displaying similar documents to “The set of recurrent points of a continuous self-map on compact metric spaces and strong chaos”

Recurrent point set of the shift on Σ and strong chaos

Lidong Wang, Gongfu Liao, Yu Yang (2002)

Annales Polonici Mathematici

Similarity:

Let (Σ,ϱ) be the one-sided symbolic space (with two symbols), and let σ be the shift on Σ. We use A(·), R(·) to denote the set of almost periodic points and the set of recurrent points respectively. In this paper, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set 𝒥 satisfying 𝒥 ⊂ R(σ)-A(σ).

An observation on the Turán-Nazarov inequality

Omer Friedland, Yosef Yomdin (2013)

Studia Mathematica

Similarity:

The main observation of this note is that the Lebesgue measure μ in the Turán-Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant ω ≥ μ, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán-Nazarov inequality, they necessarily enter the definition of ω.

Chaotic behaviour of the map x ↦ ω(x, f)

Emma D’Aniello, Timothy Steele (2014)

Open Mathematics

Similarity:

Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity...

On some notions of chaos in dimension zero

Rafał Pikuła (2007)

Colloquium Mathematicae

Similarity:

We compare four different notions of chaos in zero-dimensional systems (subshifts). We provide examples showing that in that case positive topological entropy does not imply strong chaos, strong chaos does not imply complicated dynamics at all, and ω-chaos does not imply Li-Yorke chaos.

Metric Entropy of Nonautonomous Dynamical Systems

Christoph Kawan (2014)

Nonautonomous Dynamical Systems

Similarity:

We introduce the notion of metric entropy for a nonautonomous dynamical system given by a sequence (Xn, μn) of probability spaces and a sequence of measurable maps fn : Xn → Xn+1 with fnμn = μn+1. This notion generalizes the classical concept of metric entropy established by Kolmogorov and Sinai, and is related via a variational inequality to the topological entropy of nonautonomous systems as defined by Kolyada, Misiurewicz, and Snoha. Moreover, it shares several properties with the...

Topological sequence entropy for maps of the circle

Roman Hric (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A continuous map f of the interval is chaotic iff there is an increasing sequence of nonnegative integers T such that the topological sequence entropy of f relative to T , h T ( f ) , is positive ([FS]). On the other hand, for any increasing sequence of nonnegative integers T there is a chaotic map f of the interval such that h T ( f ) = 0 ([H]). We prove that the same results hold for maps of the circle. We also prove some preliminary results concerning topological sequence entropy for maps of general compact...

Strongly proximinal subspaces of finite codimension in C(K)

S. Dutta, Darapaneni Narayana (2007)

Colloquium Mathematicae

Similarity:

We characterize strongly proximinal subspaces of finite codimension in C(K) spaces. We give two applications of our results. First, we show that the metric projection on a strongly proximinal subspace of finite codimension in C(K) is Hausdorff metric continuous. Second, strong proximinality is a transitive relation for finite-codimensional subspaces of C(K).